1 |
张楠. 新能源产业发展背景下我国铜资源供需现状与趋势. 中国矿业, 2023, 32(6): 2- 9.
URL
|
|
ZHANG N. Analysis of supply and demand status and trend of copper resources in China under development background of new energy industry. China Mining Magazine, 2023, 32(6): 2- 9.
URL
|
2 |
文博杰, 代涛, 韩中奎, 等. 中国铜资源在用存量与二次供应潜力. 地球学报, 2023, 44(2): 325- 332.
URL
|
|
WEN B J, DAI T, HAN Z K, et al. Copper in-use stock and recycling potential in China. Acta Geoscientica Sinica, 2023, 44(2): 325- 332.
URL
|
3 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
4 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2016: 779-788.
|
5 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2017: 6517-6525.
|
6 |
|
7 |
|
8 |
江波, 屈若锟, 李彦冬, 等. 基于深度学习的无人机航拍目标检测研究综述. 航空学报, 2021, 42(4): 524519.
URL
|
|
JIANG B, QU R K, LI Y D, et al. Object detection in UAV imagery based on deep learning: review. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524519.
URL
|
9 |
柯鹏飞, 蔡茂国, 吴涛. 基于改进卷积神经网络与集成学习的人脸识别算法. 计算机工程, 2020, 46(2): 262-267, 273.
URL
|
|
KE P F, CAI M G, WU T. Face recognition algorithm based on improved convolutional neural network and ensemble learning. Computer Engineering, 2020, 46(2): 262-267, 273.
URL
|
10 |
HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2023-09-17]. http://arxiv.org/abs/1704.04861.
|
11 |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4510-4520.
|
12 |
HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2019: 1314-1324.
|
13 |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 6848-6856.
|
14 |
MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[M]. Berlin, Germany: Springer International Publishing, 2018.
|
15 |
|
16 |
WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Washington D. C., USA: IEEE Press, 2020: 1571-1580.
|
17 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2017: 936-944.
|
18 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8759-8768.
|
19 |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 1577-1586.
|
20 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2016: 770-778.
|
21 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 3-19.
|
22 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
23 |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 11531-11539.
|
24 |
ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2020: 12993-13000.
|
25 |
TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL]. [2023-09-17]. http://arxiv.org/abs/2301.10051.
|
26 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 21-37.
|