[1] ZOU Z, SHI Z, GUO Y, et al.Object detection in 20 years:a survey[EB/OL].[2021-03-05].https://arxiv.org/pdf/1905.05055.pdf. [2] LECUN Y, BENGIO Y, HINTON G.Deep learning[J].Nature, 2015, 521(7553):436-444. [3] SEJNOWSKI T J.The deep learning revolution[M].Cambridge, USA:MIT Press, 2018. [4] JI Y Z, ZHANG H J, ZHANG Z, et al.CNN-based encoder-decoder networks for salient object detection:a comprehensive review and recent advances[J].Information Sciences, 2021, 546:835-857. [5] LIU L L, ZHANG H J, XU X F, et al.Collocating clothes with generative adversarial networks cosupervised by categories and attributes:a multidiscriminator framework[J].IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(9):3540-3554. [6] GAO X J, ZHANG Z, MU T T, et al.Self-attention driven adversarial similarity learning network[J].Pattern Recognition, 2020, 105:107331. [7] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2021-03-05].https://arxiv.org/abs/1409.1556. [8] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [9] HUANG G, LIU Z, VAN DER MAATEN L, et al.Densely connected convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:2261-2269. [10] IANDOLA F N, HAN S, MOSKEWICZ M W, et al.SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[EB/OL].[2021-03-05].https://arxiv.org/abs/1602.07360. [11] KRIZHEVSKY A, SUTSKEVER I, HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM, 2017, 60(6):84-90. [12] HOWARD A G, ZHU M, CHEN B, et al.MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2021-03-05].https://arxiv.org/pdf/1704.04861.pdf. [13] ZHANG X Y, ZHOU X Y, LIN M X, et al.ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:6848-6856. [14] 王军, 冯孙铖, 程勇.深度学习的轻量化神经网络结构研究综述[J].计算机工程, 2021, 47(8):1-13. WANG J, FENG S C, CHENG Y.Survey of research on lightweight neural network structures for deep learning[J].Computer Engineering, 2021, 47(8):1-13.(in Chinese) [15] 邓黄潇.基于迁移学习与RetinaNet的口罩佩戴检测的方法[J].电子技术与软件工程, 2020(5):209-211. DENG H X.Method of mask wearing detection based on transfer learning and RetinaNet[J].Electronic Technology & Software Engineering, 2020(5):209-211.(in Chinese) [16] 王艺皓, 丁洪伟, 李波, 等.复杂场景下基于改进YOLOv3的口罩佩戴检测算法[J].计算机工程, 2020, 46(11):12-22. WANG Y H, DING H W, LI B, et al.Mask wearing detection algorithm based on improved YOLOv3 in complex scenes[J].Computer Engineering, 2020, 46(11):12-22.(in Chinese) [17] 谈世磊, 别雄波, 卢功林, 等.基于YOLOv5网络模型的人员口罩佩戴实时检测[J].激光杂志, 2021, 42(2):147-150. TAN S L, BIE X B, LU G L, et al.Real-time detection for mask-wearing of personnel based on YOLOv5 network model[J].Laser Journal, 2021, 42(2):147-150.(in Chinese) [18] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once:unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:779-788. [19] REDMON J, FARHADI A.YOLO9000:better, faster, stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:6517-6525. [20] REDMON J, FARHADI A.YOLOv3:an incremental improvement[EB/OL].[2021-03-05].https://arxiv.org/abs/1804.02767. [21] BOCHKOVSKIY A, WANG C Y, LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[EB/OL].[2021-03-05].https://arxiv.org/abs/2004.10934. [22] TAN M X, LE Q V.EfficientNet:rethinking model scaling for convolutional neural networks[EB/OL].[2021-03-05].https://arxiv.org/abs/1905.11946. [23] WANG C Y, MARK LIAO H Y, WU Y H, et al.CSPNet:a new backbone that can enhance learning capability of CNN[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:1571-1580. [24] HE K M, ZHANG X Y, REN S Q, et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916. [25] LIU S, QI L, QIN H F, et al.Path aggregation network for instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:8759-8768. [26] HAN K, WANG Y H, TIAN Q, et al.GhostNet:more features from cheap operations[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:1577-1586. [27] REZATOFIGHI H, TSOI N, GWAK J, et al.Generalized intersection over union:a metric and a loss for bounding box regression[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:658-666. [28] ZHENG Z H, WANG P, LIU W, et al.Distance-IoU loss:faster and better learning for bounding box regression[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7):12993-13000. [29] YUN S, HAN D, CHUN S, et al.CutMix:regularization strategy to train strong classifiers with localizable features[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:6022-6031. [30] XIONG R B, YANG Y C, HE D, et al.On layer normalization in the transformer architecture[EB/OL].[2021-03-05].https://arxiv.org/abs/2002.04745. [31] LOSHCHILOV I, HUTTER F.SGDR:stochastic gradient descent with warm restarts[EB/OL].[2021-03-05].https://arxiv.org/abs/1608.03983. |