[1] LEUNG N H L, CHU D K W, SHIU E Y C, et al.Respiratory virus shedding in exhaled breath and efficacy of face masks[J].Nature Medicine, 2020, 26(5):676-680. [2] HE Y M, WANG Z H, GUO S Y, et al.Face mask detection algorithm based on HSV+HOG features and SVM[EB/OL].[2021-06-10].https://kns.cnki.net/kcms/detail/14.1357.TH.20210315.0832.002.html. [3] JIANG M, FAN X, YAN H.Retina facemask:a face mask detector[EB/OL].[2021-06-10].https://arxiv preprint arxiv:2005.03950. [4] ABBASI S, ABDI H, AHMADI A.A face-mask detection approach based on YOLO applied for a new collected dataset[C]//Proceedings of the 26th International Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:1-6. [5] 李文斌, 何冉.基于深度神经网络的遥感图像飞机目标检测[J].计算机工程, 2020, 46(7):268-276. LI W B, HE R.Aircraft target detection of remote sensing images based on deep neural network[J].Computer Engineering, 2020, 46(7):268-276.(in Chinese) [6] LIU G X, NOUAZE J C, TOUKO MBOUEMBE P L, et al.YOLO-tomato:a robust algorithm for tomato detection based on YOLOv3[J].Sensors, 2020, 20(7):2145. [7] 程淑红, 周斌.基于改进CNN的铝轮毂背腔字符识别[J].计算机工程, 2019, 45(5):182-186. CHENG S H, ZHOU B.Recognition of characters in aluminum wheel back cavity based on improved convolution neural network[J].Computer Engineering, 2019, 45(5):182-186.(in Chinese) [8] GIRSHICK R.Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:1440-1448. [9] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [10] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once:unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:779-788. [11] REDMON J, FARHADI A.YOLO9000:better, faster, stronger[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:6517-6525. [12] REDMON J, FARHADI A.YOLOv3:an incremental improvement[EB/OL].[2021-06-10].https://arxiv.org/abs/1804.02767. [13] LIU W, ANGUELOVD, ERHAN D, et al.SSD:single shot MultiBox detector[C]//Proceedings of 2016 European Conference on Computer Vision.Berlin, Germany:Springer, 2016:21-37. [14] MORERA Á, SÁNCHEZ Á, MORENO A B, et al.SSD vs.YOLO for detection of outdoor urban advertising panels under multiple variabilities[J].Sensors, 2020, 20(16):4587. [15] WANG Y B, WANG Y J, DANG L F.Video detection of foreign objects on the surface of belt conveyor underground coal mine based on improved SSD[J].Journal of Ambient Intelligence and Humanized Computing, 2020, 56:1-10. [16] FANG J Z, YANG H Y, CHEN P, et al.A detection algorithm of giant panda in wild video image based on wavelet-SSD network[C]//Proceedings of IEEE International Conference on Systems, Man, and Cybernetics.Washington D.C., USA:IEEE Press, 2020:3655-3660. [17] 张震, 李孟洲, 李浩方, 等.改进SSD算法及其在地铁安检中的应用[J].计算机工程, 2021, 47(7):314-320. ZHANG Z, LI M Z, LI H F, et al.Improved SSD algorithm and its application in subway security detection[J].Computer Engineering, 2021, 47(7):314-320.(in Chinese) [18] LIN T Y, DOLLÁR P, GIRSHICK R, et al.Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:936-944. [19] HOU Q B, ZHOU D Q, FENG J S.Coordinate attention for efficient mobile network design[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:13708-13717. [20] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2021-06-10].https://arxiv.org/abs/1409.1556. [21] LIN T Y, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2999-3007. [22] LI X, WANG W H, WU L J, et al.Generalized focal loss:learning qualified and distributed bounding boxes for dense object detection[EB/OL].[2021-06-10].https://arxiv preprint arxiv:2006.04388. |