1 |
赵霖, 王素珍, 邵明伟, 等. 基于改进YOLOv5的输电线路鸟巢缺陷检测方法. 电子测量技术, 2023, 46(3): 157- 165.
URL
|
|
ZHAO L, WANG S Z, SHAO M W, et al. Improved YOLOv5-based bird's nest defect detection method for transmission lines. Electronic Measurement Technology, 2023, 46(3): 157- 165.
URL
|
2 |
王亮, 黄同新, 刘志帆, 等. 山区特色架空输电线路鸟害分析与防治研究. 电工技术, 2022,(3): 38- 40.
URL
|
|
WANG L, HUANG T X, LIU Z F, et al. Analysis and prevention of bird trouble to overhead transmission lines in mountainous areas. Electric Engineering, 2022,(3): 38- 40.
URL
|
3 |
伍绍鹏. 无人机在电力输电线路巡检中的应用. 集成电路应用, 2020, 37(5): 122- 123.
URL
|
|
WU S P. Aviation material support capacity based on information management. Application of IC, 2020, 37(5): 122- 123.
URL
|
4 |
赵振兵, 蒋志钢, 李延旭, 等. 输电线路部件视觉缺陷检测综述. 中国图象图形学报, 2021, 26(11): 2545- 2560.
doi: 10.11834/jig.200689
|
|
ZHAO Z B, JIANG Z G, LI Y X, et al. Overview of visual defect detection of transmission line components. Journal of Image and Graphics, 2021, 26(11): 2545- 2560.
doi: 10.11834/jig.200689
|
5 |
杨天宇, 孙新娟. 基于深度学习的电力输电线故障目标检测算法综述. 重庆电力高等专科学校学报, 2023, 28(1): 1-4, 23.
doi: 10.3969/j.issn.1008-8032.2023.01.002
|
|
YANG T Y, SUN X J. An overview of target detection algorithms for faults of power transmission lines based on deep learning. Journal of Chongqing Electric Power College, 2023, 28(1): 1-4, 23.
doi: 10.3969/j.issn.1008-8032.2023.01.002
|
6 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: ACM Press, 2014: 580-587.
|
7 |
GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). New York, USA: ACM Press, 2015: 1440-1448.
|
8 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
9 |
邓亚平, 李迎江. YOLO算法及其在自动驾驶场景中目标检测研究综述. 计算机应用, 2024, 44(6): 1949- 1958.
URL
|
|
DENG Y P, LI Y J. Review of YOLO algorithm and its application to object detection in autonomous driving scenes. Journal of Computer Applications, 2024, 44(6): 1949- 1958.
URL
|
10 |
潘晓英, 贾凝心, 穆元震, 等. 小目标检测研究综述. 中国图象图形学报, 2023, 28(9): 2587- 2615.
URL
|
|
PAN X Y, JIA N X, MU Y Z, et al. Survey of small object detection. Journal of Image and Graphics, 2023, 28(9): 2587- 2615.
URL
|
11 |
刘小波, 肖肖, 王凌, 等. 基于无锚框的目标检测方法及其在复杂场景下的应用进展. 自动化学报, 2023, 49(7): 1369- 1392.
URL
|
|
LIU X B, XIAO X, WANG L, et al. Anchor-free based object detection methods and its application progress in complex scenes. Acta Automatica Sinica, 2023, 49(7): 1369- 1392.
URL
|
12 |
|
13 |
荚缘. 基于改进SSD算法的输电线路鸟巢识别[D]. 哈尔滨: 东北农业大学, 2022.
|
|
JIA Y. Bird nest identification on transmission lines based on improved SSD algorithm[D]. Harbin: Northeast Agricultural University, 2022. (in Chinese)
|
14 |
屈志坚, 高天姿, 池瑞, 等. 基于改进的YOLOv3接触网鸟巢检测与识别. 华东交通大学学报, 2021, 38(4): 72- 80.
URL
|
|
QU Z J, GAO T Z, CHI R, et al. Detection and recognition of bird nests in overhead catenary systems based on improved YOLOv3. Journal of East China Jiaotong University, 2021, 38(4): 72- 80.
URL
|
15 |
韦庚吾, 李英娜. 基于改进Yolov4的输电线路鸟巢轻量级检测算法. 电力科学与工程, 2022, 38(10): 64- 72.
URL
|
|
WEI G W, LI Y N. Research on lightweight detection algorithm for bird's nest on transmission line based on improved Yolov4. Electric Power Science and Engineering, 2022, 38(10): 64- 72.
URL
|
16 |
裴少通, 张善驰. 基于改进YOLOv5s的架空输电线路鸟类入侵检测方法. 智慧电力, 2023, 51(6): 100- 105.
URL
|
|
PEI S T, ZHANG S C. Bird invasion detection method for overhead transmission lines based on improved YOLOv5s. Smart Power, 2023, 51(6): 100- 105.
URL
|
17 |
张焕龙, 齐企业, 张杰, 等. 基于改进YOLOv5的输电线路鸟巢检测方法研究. 电力系统保护与控制, 2023, 51(2): 151- 159.
URL
|
|
ZHANG H L, QI Q Y, ZHANG J, et al. Bird nest detection method for transmission lines based on improved YOLOv5. Power System Protection and Control, 2023, 51(2): 151- 159.
URL
|
18 |
GU K, XIA Z F, QIAO J F, et al. Deep dual-channel neural network for image-based smoke detection. IEEE Transactions on Multimedia, 2020, 22(2): 311- 323.
|
19 |
GU K, ZHANG Y H, QIAO J F. Ensemble meta-learning for few-shot soot density recognition. IEEE Transactions on Industrial Informatics, 2021, 17(3): 2261- 2270.
|
20 |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 1577-1586.
|
21 |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4510-4520.
|
22 |
|
23 |
ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2020: 12993-13000.
|
24 |
ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IoU loss for accurate bounding box regression. Neurocomputing, 2022, 506, 146- 157.
doi: 10.1016/j.neucom.2022.07.042
|
25 |
|
26 |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision, 2020, 128(2): 336- 359.
|