1 |
|
2 |
KIRITCHENKO S, ZHU X D, CHERRY C, et al. NRC-canada-2014: detecting aspects and sentiment in customer reviews[C]//Proceedings of the 8th International Workshop on Semantic Evaluation. Stroudsburg, USA: Association for Computational Linguistics, 2014: 437-442.
|
3 |
DING X, ZHANG Y, LIU T, et al. Deep learning for event-driven stock prediction[C]//Proceedings of the 24th International Conference on Artificial Intelligence. New York, USA: ACM Press, 2015: 2327-2333.
|
4 |
WANG Y Q, HUANG M L, ZHU X Y, et al. Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2016: 606-615.
|
5 |
FAN F F, FENG Y S, ZHAO D Y. Multi-grained attention network for aspect-level sentiment classification[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2018: 3433-3442.
|
6 |
|
7 |
|
8 |
WANG K, SHEN W Z, YANG Y Y, et al. Relational graph attention network for aspect-based sentiment analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 3229-3238.
|
9 |
杨春霞, 宋金剑, 姚思诚. 面向方面级情感分析的加权依存树卷积网络. 中文信息学报, 2022, 36 (5): 125- 132.
URL
|
|
YANG C X, SONG J J, YAO S C. A weighted dependency tree convolutional networks for aspect-based sentiment analysis. Journal of Chinese Information Processing, 2022, 36 (5): 125- 132.
URL
|
10 |
赵志影, 邵新慧, 林幸. 用于方面情感分析的结合图卷积神经网络的注意力模型. 中文信息学报, 2022, 36 (7): 154- 163.
URL
|
|
ZHAO Z Y, SHAO X H, LIN X. GCN-aware attention networks for aspect-based sentiment analysis. Journal of Chinese Information Processing, 2022, 36 (7): 154- 163.
URL
|
11 |
HUANG B X, CARLEY K. Syntax-aware aspect level sentiment classification with graph attention networks[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2019: 5468-5476.
|
12 |
ZHANG C, LI Q C, SONG D W. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2019: 4567-4577.
|
13 |
施荣华, 金鑫, 胡超. 基于图注意力网络的方面级别文本情感分析. 计算机工程, 2022, 48 (2): 34- 39.
URL
|
|
SHI R H, JIN X, HU C. Aspect-level text emotion analysis based on graph attention network. Computer Engineering, 2022, 48 (2): 34- 39.
URL
|
14 |
代祖华, 刘园园, 狄世龙. 语义增强的图神经网络方面级文本情感分析. 计算机工程, 2023, 49 (6): 71- 80.
URL
|
|
DAI Z H, LIU Y Y, DI S L. Semantic enhanced aspect-level text sentiment analysis of graph neural networks. Computer Engineering, 2023, 49 (6): 71- 80.
URL
|
15 |
CHEN C H, TENG Z Y, ZHANG Y E. Inducing target-specific latent structures for aspect sentiment classification[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2020: 5596-5607.
|
16 |
屠可伟, 李俊. 句法分析前沿动态综述. 中文信息学报, 2020, 34 (7): 30- 41.
URL
|
|
TU K W, LI J. A survey of recent developments in syntactic parsing. Journal of Chinese Information Processing, 2020, 34 (7): 30- 41.
URL
|
17 |
柴伟. 短语结构句法分析综述. 电脑知识与技术, 2020, 16 (16): 26-27, 30.
URL
|
|
CHAI W. A review of the constituency parsing. Computer Knowledge and Technology, 2020, 16 (16): 26-27, 30.
URL
|
18 |
MRINI K, DERNONCOURT F, TRAN Q, et al. Rethinking self-attention: an interpretable self-attentive encoder-decoder parser[EB/OL]. [2022-11-08]. https://arxiv.org/pdf/1911.03875.pdf.
|
19 |
LI R F, CHEN H, FENG F X, et al. Dual graph convolutional networks for aspect-based sentiment analysis[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2021: 6319-6329.
|
20 |
TIAN Y H, CHEN G M, SONG Y. Aspect-based sentiment analysis with type-aware graph convolutional networks and layer ensemble[C]//Proceedings of Conference on the North American Chapter of Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: Association for Computational Linguistics, 2021: 2910-2922.
|
21 |
LIANG S, WEI W, MAO X L, et al. BiSyn-GAT+: Bi-syntax aware graph attention network for aspect-based sentiment analysis[C]//Proceedings of Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg, USA: Association for Computational Linguistics, 2022: 1835-1848.
|
22 |
PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. SemEval-2014 Task 4: aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation. Stroudsburg, USA: Association for Computational Linguistics, 2014: 27-35.
|
23 |
DONG L, WEI F R, TAN C Q, et al. Adaptive recursive neural network for target-dependent Twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2014: 49-54.
|
24 |
CHEN P, SUN Z Q, BING L D, et al. Recurrent attention network on memory for aspect sentiment analysis[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2017: 452-461.
|
25 |
LI X, BING L D, LAM W, et al. Transformation networks for target-oriented sentiment classification[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2018: 946-956.
|
26 |
|
27 |
ZHANG J, CHEN C Y, LIU P F, et al. Target-guided structured attention network for target-dependent sentiment analysis. Transactions of the Association for Computational Linguistics, 2020, 8, 172- 182.
URL
|
28 |
SUN K, ZHANG R C, MENSAH S, et al. Aspect-level sentiment analysis via convolution over dependency tree[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2019: 5678-5687.
|
29 |
ZHANG M, QIAN T Y. Convolution over hierarchical syntactic and lexical graphs for aspect level sentiment analysis[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2020: 3540-3549.
|
30 |
TANG H, JI D H, LI C L, et al. Dependency graph enhanced dual-transformer structure for aspect-based sentiment classification[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 6578-6588.
|
31 |
王光, 李鸿宇, 邱云飞, 等. 基于图卷积记忆网络的方面级情感分类. 中文信息学报, 2021, 35 (8): 98- 106.
URL
|
|
WANG G, LI H Y, QIU Y F, et al. Aspect-based sentiment classification via memory graph convolutional network. Journal of Chinese Information Processing, 2021, 35 (8): 98- 106.
URL
|