[1] WHO.Top ten causes of death[EB/OL].[2021-11-10].https://www.who.int/zh/news-room/fact-sheets/detail/the-top-10-causes-of-death. [2] 李志平, 张福利, 马学博.心电研究与现代心电图检测法建立的历史回顾[J].中华医史杂志, 1999(4):215-219. LI Z P, ZHANG F L, MA X B.A historical review of the study of electrical activity of heart and origination of electrocardiography[J].China Journal of Medical History, 1999(4):215-219.(in Chinese) [3] FLOWERS N C, HORAN L G, THOMAS J R, et al.The anatomic basis for high-frequency components in the electrocardiogram[J].Singapore Medical Journal, 1969, 39(4):531-539. [4] ABBOUD S, ZLOCHIVER S.High-frequency QRS electrocardiogram for diagnosing and monitoring ischemic heart disease[J].Journal of Electrocardiology, 2006, 39(1):82-86. [5] CEYLAN R, ÖZBAY Y, KARLIK B.A novel approach for classification of ECG arrhythmias:type-2 fuzzy clustering neural network[J].Expert Systems with Applications, 2009, 36(3):6721-6726. [6] WANG J S, CHIANG W C, YANG Y T C, et al.An effective ECG arrhythmia classification algorithm[C]//Proceedings of the 7th International Conference on Intelligent Computing:Bio-inspired Computing and Applications.Berlin, Germany:Springer, 2011:545-550. [7] ZIDELMAL Z, AMIROU A, OULD-ABDESLAM D, et al.ECG beat classification using a cost sensitive classifier[J].Computer Methods and Programs in Biomedicine, 2013, 111(3):570-577. [8] CAI J X, SUN W W, GUAN J F, et al.Multi-ECGNet for ECG arrythmia multi-label classification[J].IEEE Access, 2020, 8:110848-110858. [9] WANG J K, QIAO X, LIU C C, et al.Automated ECG classification using a non-local convolutional block attention module[J].Computer Methods and Programs in Biomedicine, 2021, 203:106006-106012. [10] BAHDANAU D, CHO K, BENGIO Y.Neural machine translation by jointly learning to align and translate[EB/OL].[2021-11-10].https://www.semanticscholar.org/paper/Neural-Machine-Translation-by-Jointly-Learning-to-Bahdanau-Cho/fa72afa9b2cbc8f0d7b05d52548906610ffbb9c5. [11] JADERBERG M, SIMONYAN K, ZISSERMAN A.Spatial transformer networks[J].Advances in Neural Information Processing Systems, 2015, 28:17-25. [12] HU J, SHEN L, SUN G.Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7132-7141. [13] WANG F, JIANG M Q, QIAN C, et al.Residual attention network for image classification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:6450-6458. [14] YAO L, MAO C S, LUO Y.Graph convolutional networks for text classification[J].Proceedings of AAAI Conference on Artificial Intelligence, 2019, 33:7370-7377. [15] QIN A Y, SHANG Z W, TIAN J Y, et al.Spectral-spatial graph convolutional networks for semisupervised hyperspectral image classification[J].IEEE Geoscience and Remote Sensing Letters, 2019, 16(2):241-245. [16] WANG Z D, ZHENG L, LI Y L, et al.Linkage based face clustering via graph convolution network[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:1117-1125. [17] HAMILTON W L, YING R, LESKOVEC J.Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.Washington D.C., USA:IEEE Press, 2017:1025-1035. [18] LI Q M, HAN Z C, WU X M.Deeper insights into graph convolutional networks for semi-supervised learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence.New Orleans, USA:AAAI Press, 2018:65-72. [19] ESTRACH J B, ZAREMBA W, SZLAM A, et al.Spectral networks and deep locally connected networks on graphs[EB/OL].[2021-11-10].https://www.doc88.com/p-7856953882676.html. [20] DEFFERRARD M, BRESSON X, VANDERGHEYNST P.Convolutional neural networks on graphs with fast localized spectral filtering[J].Advances in Neural Information Processing Systems, 2016, 29:3844-3852. [21] KIPF T, WELLING M.Semi-supervised classification with graph convolutional networks[EB/OL].[2021-11-10].https://www.semanticscholar.org/paper/Semi-Supervised-Classification-with-Graph-Networks-Kipf-Welling/36eff562f65125511b5dfab68ce7f7a943c27478. [22] VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al.Graph attention networks[EB/OL].[2021-11-10].https://www.xueshufan.com/publication/2963858333. [23] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [24] CHOLLET F.Xception:deep learning with depthwise separable convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:1800-1807. [25] WAGNER P, STRODTHOFF N, BOUSSELJOT R D, et al.PTB-XL, a large publicly available electrocardiography dataset[J].Scientific Data, 2020, 7(1):154-161. [26] SZEGEDY C, VANHOUCKE V, IOFFE S, et al.Rethinking the inception architecture for computer vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:2818-2826. [27] STRODTHOFF N, WAGNER P, SCHAEFFTER T, et al.Deep learning for ECG analysis:benchmarks and insights from PTB-XL[J].IEEE Journal of Biomedical and Health Informatics, 2021, 25(5):1519-1528. [28] ZHANG M L, ZHANG K.Multi-label learning by exploiting label dependency[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2010:999-1008. [29] ZHANG M L, ZHOU Z H.A review on multi-label learning algorithms[J].IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8):1819-1837. [30] JAIN H, PRABHU Y, VARMA M.Extreme multi-label loss functions for recommendation, tagging, ranking & other missing label applications[C]//Proceedings of the 22nd ACM International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2016:935-944. [31] CHEN W, LIU T Y, LAN Y, et al.Ranking measures and loss functions in learning to rank[J].Advances in Neural Information Processing Systems, 2009, 22:315-23. |