[1] National Aeronautics and Space Administration(NASA).Mars exploration program[EB/OL].[2022-09-01].https://mars.nasa.gov/. [2] LI C L,ZHANG R Q,YU D Y,et al.China's Mars exploration mission and science investigation[J].Space Science Reviews,2021,217(4):57. [3] 中国国家航天局.中国月球与深空探测工程地面应用系统[EB/OL].[2022-09-01].http://moon.bao.ac.cn. China National Space Administration(CNSA).Ground application system of China lunar and deep space exploration project[EB/OL].[2022-09-01].http://moon.bao.ac.cn.(in Chinese) [4] KUANG B Y,WISNIEWSKI M,RANA Z A,et al.Rock segmentation in the navigation vision of the planetary rovers[J].Mathematics,2021,9(23):3048. [5] XIAO X M,CUI H T,YAO M B,et al.Auto rock detection via sparse-based background modeling for Mars rover[C]//Proceedings of IEEE Congress on Evolutionary Computation.Washington D.C.,USA:IEEE Press,2018:1-6. [6] DI K C,YUE Z Y,LIU Z Q,et al.Automated rock detection and shape analysis from Mars rover imagery and 3D point cloud data[J].Journal of Earth Science,2013,24(1):125-135. [7] 景庄伟,管海燕,彭代峰,等.基于深度神经网络的图像语义分割研究综述[J].计算机工程,2020,46(10):1-17. JING Z W,GUAN H Y,PENG D F,et al.Survey of research in image semantic segmentation based on deep neural network[J].Computer Engineering,2020,46(10):1-17.(in Chinese) [8] COATES A,NG A Y.Learning feature representations with k-means[M].Berlin,Germany:Springer,2012. [9] 汪海洋,潘德炉,夏德深.二维Otsu自适应阈值选取算法的快速实现[J].自动化学报,2007,33(9):968-971. WANG H Y,PAN D L,XIA D S.A fast algorithm for two-dimensional Otsu adaptive threshold algorithm[J].Acta Automatica Sinica,2007,33(9):968-971.(in Chinese) [10] SHOTTON J,JOHNSON M,CIPOLLA R.Semantic TextOn forests for image categorization and segmentation[C]//Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2008:1-8. [11] LATEEF F,RUICHEK Y.Survey on semantic segmentation using deep learning techniques[J].Neurocomputing,2019,338:321-348. [12] LIU D Q,BOBER M,KITTLER J.Visual semantic information pursuit:a survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(4):1404-1422. [13] MINAEE S,BOYKOV Y,PORIKLI F,et al.Image segmentation using deep learning:a survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(7):3523-3542. [14] LI H C,QIU L W,LI Z,et al.Automatic rocks segmentation based on deep learning for planetary rover images[J].Natural Science,2021,18(11):755-761. [15] SWAN R M,ATHA D,LEOPOLD H A,et al.AI4Mars:a dataset for terrain-aware autonomous driving on Mars[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2021:1982-1991. [16] 李春来,刘建军,耿言,等.中国首次火星探测任务科学目标与有效载荷配置[J].深空探测学报,2018,5(5):406-413. LI C L,LIU J J,GENG Y,et al.Scientific objectives and payload configuration of China's first Mars exploration mission[J].Journal of Deep Space Exploration,2018,5(5):406-413.(in Chinese) [17] LIANG X,CHEN W L,CAO Z X,et al.The navigation and terrain cameras on the Tianwen-1 Mars rover[J].Space Science Reviews,2021,217(3):37. [18] HUGHES J S,CRICHTON D,HARDMAN S,et al.PDS4:a model-driven planetary science data architecture for long-term preservation[C]//Proceedings of the 30th IEEE International Conference on Data Engineering.Washington D.C.,USA:IEEE Press,2014:134-141. [19] TAN X,LIU J J,ZHANG X X,et al.Design and validation of the scientific data products for China's Tianwen-1 mission[J].Space Science Reviews,2021,217(5):69. [20] RUSSELL B C,TORRALBA A,MURPHY K P,et al.LabelMe:a database and web-based tool for image annotation[J].International Journal of Computer Vision,2008,77(1):157-173. [21] QIU L W,LI H C,LI Z,et al.Residual grounding transformer network for terrain recognition on the lunar surface[J].Applied Optics,2021,60(21):6002-6014. [22] SANDLER M,HOWARD A,ZHU M L,et al.MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:4510-4520. [23] HOWARD A,SANDLER M,CHEN B,et al.Searching for MobileNetV3[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2020:1314-1324. [24] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-778. [25] IBTEHAZ N,RAHMAN M S.MultiResUNet:rethinking the U-Net architecture for multimodal biomedical image segmentation[J].Neural Networks,2020,121:74-87. |