1 |
CHAO G Q, SUN S L, BI J B. A survey on multiview clustering. IEEE Transactions on Artificial Intelligence, 2021, 2(2): 146- 168.
doi: 10.1109/TAI.2021.3065894
|
2 |
HAN J, KAMBER M, PEI J. Data mining: concepts and techniques[M]. [S. l. ]: Morgan Kaufmann Publishers Inc., 2006.
|
3 |
钱雪忠, 姚琳燕. 面向稀疏高维大数据的扩展增量模糊聚类算法. 计算机工程, 2019, 45(6): 75-81, 88..
URL
|
|
QIAN X Z, YAO L Y. Extended incremental fuzzy clustering algorithm for sparse high-dimensional big data. Computer Engineering, 2019, 45(6): 75-81, 88..
URL
|
4 |
YAO Y Q, LI Y, JIANG B B, et al. Multiple kernel k-means clustering by selecting representative kernels. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(11): 4983- 4996.
doi: 10.1109/TNNLS.2020.3026532
|
5 |
FENG L, CAI L, LIU Y, et al. Multi-view spectral clustering via robust local subspace learning. Soft Computing, 2017, 21(8): 1937- 1948.
doi: 10.1007/s00500-016-2120-3
|
6 |
TZORTZIS G, LIKAS A. Kernel-based weighted multi-view clustering[C]//Proceedings of the 12th International Conference on Data Mining. Washington D. C., USA: IEEE Press, 2013: 675-684.
|
7 |
XU Y M, WANG C D, LAI J H. Weighted multi-view clustering with feature selection. Pattern Recognition: The Journal of the Pattern Recognition Society, 2016, 53, 25- 35.
doi: 10.1016/j.patcog.2015.12.007
|
8 |
LIU J, CAO F Y, GAO X Z, et al. A cluster-weighted kernel K-means method for multi-view clustering. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 4860- 4867.
doi: 10.1609/aaai.v34i04.5922
|
9 |
HU J T, LI M M, ZHU E, et al. Consensus multiple kernel K-means clustering with late fusion alignment and matrix-induced regularization. IEEE Access, 2019, 7, 136322- 136331.
doi: 10.1109/ACCESS.2019.2940896
|
10 |
WANG H, YANG Y, LIU B, et al. A study of graph-based system for multi-view clustering. Knowledge-Based Systems, 2019, 163, 1009- 1019.
doi: 10.1016/j.knosys.2018.10.022
|
11 |
陶洋, 鲍灵浪, 胡昊. 结构约束的对称低秩表示子空间聚类算法. 计算机工程, 2021, 47(4): 56-61, 67.
URL
|
|
TAO Y, BAO L L, HU H. Structure-constrained symmetric low-rank representation algorithm for subspace clustering. Computer Engineering, 2021, 47(4): 56-61, 67.
URL
|
12 |
WANG Y, ZHANG W, WU L, et al. Iterative views agreement: an iterative low-rank based structured optimization method to multi-view spectral clustering[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York, USA: AAAI Press, 2016: 2153-2159.
|
13 |
CAO X C, ZHANG C Q, FU H Z, et al. Diversity-induced multi-view subspace clustering[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 586-594.
|
14 |
EL HAJJAR S, DORNAIKA F, ABDALLAH F. One-step multi-view spectral clustering with cluster label correlation graph. Information Sciences, 2022, 592, 97- 111.
doi: 10.1016/j.ins.2022.01.017
|
15 |
LI M, LIU X, LEI W, et al. Multiple kernel clustering with local kernel alignment maximization[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York, USA: AAAI Press, 2016: 1704-1710.
|
16 |
CAI X, NIE F P, HUANG H, et al. Heterogeneous image feature integration via multi-modal spectral clustering[C]//Proceedings of CVPR'11. Washington D. C., USA: IEEE Press, 2011: 1977-1984.
|
17 |
NIE F P, LI J, LI X L. Parameter-free auto-weighted multiple graph learning: a framework for multiview clustering and semi-supervised classification[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York, USA: AAAI Press, 2016: 1881-1887.
|
18 |
LIN S X, ZHONG G, SHU T. Simultaneously learning feature-wise weights and local structures for multi-view subspace clustering. Knowledge-Based Systems, 2020, 205, 106280.
doi: 10.1016/j.knosys.2020.106280
|
19 |
NIE F P, TIAN L, LI X L. Multiview clustering via adaptively weighted procrustes[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2018: 2022-2030.
|
20 |
CHECHIK G, HEITZ G, ELIDAN G, et al. Max-margin classification of data with absent features. Journal of Machine Learning Research, 2008, 9, 1- 21.
|
21 |
ZHOU D Y, BURGES C J C. Spectral clustering and transductive learning with multiple views[C]//Proceedings of the 24th International Conference on Machine Learning. New York, USA: ACM Press, 2007: 1159-1166.
|
22 |
YU S, TRANCHEVENT L, LIU X H, et al. Optimized data fusion for kernel k-means clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(5): 1031- 1039.
doi: 10.1109/TPAMI.2011.255
|
23 |
LIU X W, DOU Y, YIN J P, et al. Multiple kernel k-means clustering with matrix-induced regularization[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. New York, USA: AAAI Press, 2016: 1888-1894.
|
24 |
YIN Q Y, WU S, HE R, et al. Multi-view clustering via pairwise sparse subspace representation. Neurocomputing, 2015, 156, 12- 21.
doi: 10.1016/j.neucom.2015.01.017
|
25 |
ZHANG X C, ZHAO L, ZONG L L, et al. Multi-view clustering via multi-manifold regularized nonnegative matrix factorization[C]//Proceedings of IEEE International Conference on Data Mining. Washington D. C., USA: IEEE Press, 2015: 1103-1108.
|
26 |
HUANG D, WANG C D, LAI J H. Locally weighted ensemble clustering. IEEE Transactions on Cybernetics, 2018, 48(5): 1460- 1473.
doi: 10.1109/TCYB.2017.2702343
|
27 |
FRED A L N, JAIN A K. Combining multiple clusterings using evidence accumulation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 835- 850.
doi: 10.1109/TPAMI.2005.113
|
28 |
STREHL A, GHOSH J. Cluster ensembles―a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 2003, 3(3): 583- 617.
|
29 |
KUMAR A, RAI P, DAUMÉ H. Co-regularized multi-view spectral clustering[C]//Proceedings of the 24th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2011: 1413-1421.
|
30 |
ZHANG P, LIU X W, XIONG J, et al. Consensus one-step multi-view subspace clustering[C]//Proceedings of the 39th International Conference on Data Engineering. Washington D. C., USA: IEEE Press, 2023: 3761-3762.
|