1 |
FANG Z, CAO Y N, LI R, et al. High quality candidate generation and sequential graph attention network for entity linking[C]//Proceedings of Web Conference 2020. New York, USA: ACM Press, 2020: 640-650.
|
2 |
|
3 |
|
4 |
NADEAU D, SEKINE S. A survey of named entity recognition and classification. Lingvisticae Investigationes, 2007, 30(1): 3- 26.
doi: 10.1075/li.30.1.03nad
|
5 |
GRAVES A. Supervised sequence labelling. Berlin, Germany: Springer, 2012.
|
6 |
|
7 |
张汝佳, 代璐, 王邦, 等. 基于深度学习的中文命名实体识别最新研究进展综述. 中文信息学报, 2022, 36(6): 20- 35.
URL
|
|
ZHANG R J, DAI L, WANG B, et al. Recent advances of Chinese named entity recognition based on deep learning. Journal of Chinese Information Processing, 2022, 36(6): 20- 35.
URL
|
8 |
|
9 |
SOHRAB M G, MIWA M. Deep exhaustive model for nested named entity recognition[C]//Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2018: 2843-2849.
|
10 |
|
11 |
连艺谋, 张英俊, 谢斌红. 用于嵌套命名实体识别的边界强化分类模型. 计算机工程, 2022, 48(8): 313- 320.
URL
|
|
LIAN Y M, ZHANG Y J, XIE B H. Boundary enhanced classification model for nested named entity recognition. Computer Engineering, 2022, 48(8): 313- 320.
URL
|
12 |
SHIBUYA T, HOVY E. Nested named entity recognition via second-best sequence learning and decoding. Transactions of the Association for Computational Linguistics, 2020, 8, 605- 620.
doi: 10.1162/tacl_a_00334
|
13 |
WANG Y R, SHINDO H, MATSUMOTO Y, et al. Nested named entity recognition via explicitly excluding the influence of the best path. Journal of Natural Language Processing, 2022, 29(1): 23- 52.
doi: 10.5715/jnlp.29.23
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
EDDY S R. Hidden Markov models. Current Opinion in Structural Biology, 1996, 6(3): 361- 365.
doi: 10.1016/S0959-440X(96)80056-X
|
19 |
QUINLAN J R. Induction of decision trees. Machine Learning, 1986, 1(1): 81- 106.
|
20 |
KAPUR J N. Maximum-entropy models in science and engineering. Biometrics, 1992, 48(1): 333.
|
21 |
SUTHAHARAN S. Support vector machine. Berlin, Germany: Springer, 2016.
|
22 |
LAFFERTY J, MCCALLUM A, PEREIRA F. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning. New York, USA: ACM Press, 2001: 282-289.
|
23 |
|
24 |
崔丽平, 古丽拉·阿东别克, 王智悦. 基于有向图模型的旅游领域命名实体识别. 计算机工程, 2022, 48(2): 306- 313.
URL
|
|
CUI L P, Gulila Altenbek, WANG Z Y. Named entity recognition in tourism based on directed graph model. Computer Engineering, 2022, 48(2): 306- 313.
URL
|
25 |
|
26 |
SUI D B, TIAN Z K, CHEN Y B, et al. A large-scale Chinese multimodal NER dataset with speech clues[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 1: Long Papers). Stroudsburg, USA: Association for Computational Linguistics, 2021: 2807-2818.
|
27 |
廖涛, 黄荣梅, 张顺香, 等. 基于交互式特征融合的嵌套命名实体识别. 计算机工程, 2022, 48(12): 119-126, 133.
URL
|
|
LIAO T, HUANG R M, ZHANG S X, et al. Nested named entity recognition based on interactive feature fusion. Computer Engineering, 2022, 48(12): 119-126, 133.
URL
|
28 |
|
29 |
JU M, MIWA M, ANANIADOU S. A neural layered model for nested named entity recognition[C]//Proceedings of 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1(Long Papers). Philadelphia, USA: ACL Press, 2018: 1446-1459.
|