[1] 王浩畅, 赵铁军.基于SVM的生物医学命名实体的识别[J].哈尔滨工程大学学报, 2006, 27(7):570-574. WANG H C, ZHAO T J.SVM-based biomedical named entity recognition[J].Journal of Harbin Engineering University, 2006, 27(7):570-574.(in Chinese) [2] 罗凌, 杨志豪, 宋雅文, 等.基于笔画ELMo和多任务学习的中文电子病历命名实体识别研究[J].计算机学报, 2020, 43(10):1943-1957. LUO L, YANG Z H, SONG Y W, et al.Research on naming entity recognition of Chinese electronic medical records based on stroke ELMo and multi-task learning[J].Chinese Journal of Computers, 2020, 43(10):1943-1957.(in Chinese) [3] 李源, 马磊, 邵党国, 等.用于社交媒体的中文命名实体识别[J].中文信息学报, 2020, 34(8):61-69. LI Y, MA L, SHAO D G, et al.Chinese named entity recognition for social media[J].Journal of Chinese Information Processing, 2020, 34(8):61-69.(in Chinese) [4] LEAMAN R, WEI C H, LU Z Y, et al.TmChem:a high performance approach for chemical named entity recognition and normalization[J].Journal of Cheminformatics, 2015, 7:1-10. [5] 汤亚芬.先秦古汉语典籍中的人名自动识别研究[J].现代图书情报技术, 2013, 29(7/8):63-68. TANG Y F.Study on automatic recognition of names in ancient Chinese classics before Qin dynasty[J].Modern Library and Information Technology, 2013, 29(7/8):63-68.(in Chinese) [6] 薛征山, 郭剑毅, 余正涛, 等.基于HMM的中文旅游景点的识别[J].昆明理工大学学报(理工版) 2009, 34(6):44-48. XUE Z S, GUO J Y, YU Z T, et al.Recognition of Chinese tourist attractions based on HMM[J].Journal of Kunming University of Science and Technology (Science and Technology Edition).2009, 34(6):44-48.(in Chinese) [7] 郭剑毅, 薛征山, 余正涛, 等.基于层叠条件随机场的旅游领域命名实体识别[J].中文信息学报, 2009, 23(5):47-53. GUO J Y, XUE Z S, YU Z T, et al.Recognition of named entities in the tourism field based on stacked conditional random fields[J].Journal of Chinese Information Processing, 2009, 23(5):47-53.(in Chinese) [8] 刘小安, 彭涛.基于卷积神经网络的中文景点识别研究[J].计算机工程与应用, 2020, 56(4):140-145. LIU X A, PENG T.Research on Chinese scenic spot recognition based on convolutional neural network[J].Computer Engineering and Applications, 2020, 56(4):140-145.(in Chinese) [9] EKBAL A, BANDYOPADHYAY S.Named entity recognition using support vector machine:a language independent approach[J].International Journal of Computer Systems Science & Engineering, 2010, 4(3):589-604. [10] SAITO K, NAGATA M.Multi-language named-entity recognition system based on HMM[C]//Proceedings of the Workshop on Multilingual and Mixed-language Named Entity Recognition(NER@ACL).New York, USA:ACM Press, 2003:41-48. [11] LAFFERTY J, MCCALLUM A, PEREIRA F.Conditional random fields:probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 8th International Conference on Machine Learning.New York, USA:ACM Press, 2001:282-289. [12] VARGA D, SIMON E.Hungarian named entity recognition with a maximum entropy approach[J].Acta Cybernetica, 2007, 18(2):293-301. [13] COLLOBERT R, WESTON J, BOTTOU L, et al.Natural language processing (almost) from scratch[J].Journal of Machine Learning Research, 2011, 12(1):2493-2537. [14] HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J].Neural Computation, 1997, 9(8):1735-1780. [15] CHO K, MERRIENBOER V B, GULCEHRE D, et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing.Washington D.C., USA:IEEE Press, 2014:1724-1734. [16] GRAVES A, SCHMIDHUBER J.Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J].Neural Networks, 2005, 18(5/6):602-610. [17] HUANG Z H, WEI X, KAI Y.Bidirectional LSTM-CRF models for sequence tagging[EB/OL].[2020-10-15].https://arxiv.org/pdf/1508.01991.pdf. [18] MA X, HOVY E.End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.Berlin, Germany:ACL, 2016:1064-1074. [19] HABIBI M, WEBER L, NEVES M L, et al.Deep learning with word embeddings improves biomedical named entity recognition[J].Bioinformatics, 2017, 33(14):37-48. [20] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[C]//Proceedings of Advances in Neural Information Processing Systems.New York, USA:ACM Press, 2017:6000-6010. [21] YAN H, DENG B, LI X, et al.TENER:adapting transformer encoder for named entity recognition[EB/OL].[2020-10-15].https://arxiv.org/pdf/1911.04474.pdf. [22] HE J Z, WANG H F.Chinese named entity recognition and word segmentation based on character[C]//Proceedings of International Joint Conference on Natural Language Processing.New York, USA:ACM Press, 2008:128-132. [23] LIU Z, ZHU C, ZHAO T.Chinese named entity recognition with a sequence labeling approach:based on characters, or based on words?[C]//Proceedings of the 3rd International Joint Conference on Natural Language Processing.Berlin, Germany:Springer, 2010:128-132. [24] GUI T, MA R, ZHANG Q, et al.CNN-based chinese ner with lexicon rethinking[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.Macao, China:[s.n.], 2019:4982-4988. [25] YAN X, YINING W, TIANREN L, et al.Joint segmentation and named entity recognition[J].Journal of the American Medical Informatics Association, 2013, 21(1):84-92. [26] WU F, LIU J, WU C, et al.Neural chinese named entity recognition via CNN-LSTM-CRF and joint training with word segmentation[C]//Proceedings of the World Wide Web Conference.New York, USA:ACM Press, 2019:3342-3348. [27] ZHANG Y, YANG J.Chinese NER using Lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.New York, USA:ACM Press, 2018:1554-1564. [28] CHARLES A P, HAITAN L.The constituency model of chinese word identification[M].London, UK:Psychology Press, 2021. [29] GORI M, MONFARDINI G, SCARSELLI F, et al.A new model for learning in graph domains[C]//Proceedings of IEEE International Joint Conference on Neural Networks.Washington D.C., USA:IEEE Press, 2005:729-734. [30] BRUNA J, ZAREMBA W, SZLAM A, et al.Spectral networks and locally connected networks on graphs[EB/OL].[2020-10-15].https://arxiv.org/pdf/1312.6203v2.pdf. [31] VELICKOVIC P, CUCURULL G, CASANOVA A, et al.Graph attention networks[EB/OL].[2020-10-15].https://arxiv.org/pdf/1710.10903.pdf. [32] YOU J, YING R, XIANG R, et al.GraphRNN:a deep generative model for graphs[EB/OL].[2020-10-15].https://ar.xiv.org/pdf/1802.08773.pdf. [33] YAO L, MAO C, LUO Y, et al.Graph convolutional networks for text classification[C]//Proceedings of National Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2019:7370-7377. [34] ZHANG Y, QI P, MANNING C D, et al.Graph convolution over pruned dependency trees improves relation extraction[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing.Brussels, Belgium:ACL, 2018:2205-2215. [35] CHEN X C, QIU X P, ZHU C, et al.Long short-term memory neural networks for chinese word segmentation[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing.Lisbon, Portugal:[s.n.], 2015:1197-1206. [36] LIN C Y, XUE N, ZHAO D, et al.Character-based LSTM-CRF with radical-level features for chinese named entity recognition[C]//Proceedings of National CCF Conference on Natural Language Processing and Chinese Computing.Berlin, Germany:Springer, 2016:239-250. [37] LI Y J, TARLOW D, BROCKSCHMIDT M, et al.Gated graph sequence neural networks[EB/OL].[2020-10-15].https://arxiv.org/pdf/1511.05493.pdf. [38] LI S, ZHAO Z, HU R, et al.Analogical reasoning on chinese morphological and semantic relations[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.Melbourne, Australia:[s.n.], 2018:138-143. |