作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2022, Vol. 48 ›› Issue (8): 313-320. doi: 10.19678/j.issn.1000-3428.0062181

• 开发研究与工程应用 • 上一篇    

用于嵌套命名实体识别的边界强化分类模型

连艺谋, 张英俊, 谢斌红   

  1. 太原科技大学 计算机科学与技术学院, 太原, 030024
  • 收稿日期:2021-07-26 修回日期:2021-09-21 发布日期:2021-10-18
  • 作者简介:连艺谋(1996-),男,硕士研究生,主研方向为深度学习、自然语言处理;张英俊,教授;谢斌红,副教授。
  • 基金资助:
    山西省重点研发计划(重点)高新领域项目(201703D111027);山西省重点研发计划(201803D121048,201803D121055)。

Boundary Enhanced Classification Model for Nested Named Entity Recognition

LIAN Yimou, ZHANG Yingjun, XIE Binhong   

  1. School of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
  • Received:2021-07-26 Revised:2021-09-21 Published:2021-10-18

摘要: 实体嵌套是自然语言中一种常见现象,提高嵌套命名实体识别的准确性对自然语言处理各项任务具有重要作用。针对现有嵌套命名实体识别方法在识别实体边界时不够准确、未能有效利用实体边界信息等问题,提出一种嵌套命名实体识别的边界强化分类模型。采用卷积神经网络提取邻接词的特征,通过加入多头注意力的序列标注模型获取实体中的边界特征,提高实体边界检测的准确性。在此基础上,计算实体中各词语对实体类型的贡献度,将实体关键字与实体边界词相结合来表示实体,使实体表示中包含实体关键信息和边界信息,最后进行实体类型检测。实验结果表明,通过加入多头注意力机制能够有效提升对嵌套命名实体的检测和识别性能,该模型在GENIA和GermEval 2014数据集上准确率有较好表现,并且召回率和F1值较对比模型达到最优。

关键词: 嵌套命名实体识别, 实体表示, 注意力机制, 边界, 神经网络

Abstract: Entity nesting is a common phenomenon in natural language.Improving the accuracy of nested Named Entity Recognition(NER) plays an important role in various Natural Language Processing(NLP) tasks.Addressing the inaccuracy of existing nested NER methods for identifying entity boundaries and their ineffective use of entity boundary information, a boundary enhanced classification model for nested NER is proposed.A Convolution Neural Network(CNN) is used to extract features of adjacent words, and sequence annotation model with multi-heads attention is added to obtain the boundary features of entities and improve the accuracy of entity boundary detection.On this basis, the model first calculates the contribution of each word in the entity to each entity type, combines the entity keyword with each entity boundary word to represent the entity, makes the entity representation contain the entity key and boundary information, and finally determines the entity type.Experiments show that adding the multi-head attention mechanism effectively improves the performances of nested NER and recognition.The model demonstrated a good accuracy performance on the GENIA and GermEval 2014 datasets.In addition, of all models compared in the experiments, the proposed model achieved the best recall rate and F1-score.

Key words: nested Named Entity Recognition(NER), entity representation, attention mechanism, boundary, neural network

中图分类号: