[1] CHINCHOR N, ROBINSON P.MUC-7 named entity task definition[C]//Proceedings of the 7th Conference on Message Understanding.Washington D.C., USA:IEEE Press, 1995:319-332. [2] LAFFERTY J D, MCCALLUM A, PEREIRA F C N.Conditional random fields:probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning.Berlin, Germany:Springer, 2001:282-289. [3] GUILLAUME L, MIGUEL B, SANDEEP S, et al.Neural architectures for named entity recognition[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2016:260-270. [4] HUANG Z, XU W, YU K.Bidirectional LSTM-CRF models for sequence tagging[EB/OL].[2021-05-12].https://arxiv.org/abs/1508.01991. [5] SHEN D, ZHANG J, ZHOU G, et al.Effective adaptation of a hidden Markov model-based named entity recognizer for biomedical domain[C]//Proceedings of the ACL 2003 Workshop on Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2003:49-56. [6] ZHANG J, SHEN D, ZHOU G, et al.Enhancing HMM-based biomedical named entity recognition by studying special phenomena[J].Journal of Biomedical Informatics, 2004, 37(6):411-422. [7] BORTHWICK A, GRISHMAN R.A maximum entropy approach to named entity recognition[D].New York, USA:New York University, 1999. [8] LU W, ROTH D.Joint mention extraction and classification with mention hypergraphs[C]//Proceedings of 2015 Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2015:857-867. [9] WANG B, LU W.Neural segmental hypergraphs for overlapping mention recognition[C]//Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2018:204-214. [10] JU M, MIWA M, ANANIADOU S.A neural layered model for nested named entity recognition[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Stroudsburg, USA:Association for Computational Linguistics, 2018:1446-1459. [11] LIN H, LU Y, HAN X, et al.Sequence-to-nuggets:nested entity mention detection via anchor-region networks[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2019:5182-5192. [12] FISHER J, VLACHOS A.Merge and label:a novel neural network architecture for nested NER[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2019:5840-5850. [13] SOHRAB M G, MIWA M.Deep exhaustive model for nested named entity recognition[C]//Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2018:2843-2849. [14] XU M, JIANG H, WATCHARAWITTAYAKUL S.A local detection approach for named entity recognition and mention detection[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2017:1237-1247. [15] ZHENG C, CAI Y, XU J, et al.A boundary-aware neural model for nested named entity recognition[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2019:357-366. [16] TAN C Q, QIU W, CHEN M S, et al.Boundary enhanced neural span classification for nested named entity recognition[C]//Proceedings of AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2020:9016-9023. [17] MA X Z, HOVY E.End-to-end sequence labeling via Bi-directional LSTM-CNNs-CRF[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2016:1064-1074. [18] WANG Y R, TIAN F.Recurrent residual learning for sequence classification[C]//Proceedings of 2016 Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2016:938-943. [19] 杨姗姗, 姜丽芬, 孙华志, 等.基于时间卷积网络的多项选择机器阅读理解[J].计算机工程, 2020, 46(11):97-103. YANG S S, JIANG L F, SUN H Z, et al.Multiple choice machine reading comprehension based on temporal convolutional network[J].Computer Engineering, 2020, 46(11):97-103.(in Chinese) [20] JENNY R F, CHRISTOPHER D M.Nested named entity recognition[C]//Proceedings of 2009 Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2009:141-150. [21] MUIS A O, LU W.Labeling gaps between words:recognizing overlapping mentions with mention separators[C]//Proceedings of 2017 Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2017:2608-2618. |