[1] CASTILLO C, MENDOZA M, POBLETE B. Information credibility on Twitter[C]// Proceedings of the 20th International Conference on World Wide Web. Hyderabad: IEEE, 2011: 675-684.
[2] MA J, GAO W, MITRA P, et al. Detecting rumors from microblogs with recurrent neural networks[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York: ACM, 2016: 3818–3824.
[3] Bhatt G, Sharma A, Sharma S, et al. Combining Neural, Statistical and External Features for Fake News Identification[C]// Companion Proceedings of The International Conference of World Wide Web 2018. Lyon, France: ACM, 2018: 1353-1357.
[4] ZHIYUAN Z, YUAN Q, ZHENG L, et al. A C-GRU Neural Network for Rumors Detection [C]// The 5th IEEE International Conference on Cloud Computing and Intelligence Systems. Nanjing, China: IEEE, 2018: 704-708.
[5] Qi P, Cao J, Yang T, et al. Exploiting Multi-domain Visual Information for Fake News Detection[C]// 2019 IEEE International Conference on Data Mining. Beijing: IEEE, 2019: 518-527.
[6] Bahdanau D, Cho K, Bengio Y. Neural Machine Translation by Jointly Learning to Align and Translate[C]// 2015 International Conference on Learning Representations. San Diego, CA: ACM, 2015: 1104-1116.
[7] VASWANI A, SHAZEER N, et al. Attention Is All You Need[C]// Advances in Neural Information Processing Systems 30. Long Beach, CA, USA:NIPS, 2017: 5998-6008.
[8] HE Jun, ZHANG Caiqing, LI Xiaozhen, et al. Survey of Research on Multimodal Fusion Technology for Deep Learning[J]. Computer Engineering, 2020, 46(5), 1-11. (in Chinese)
何俊, 张彩庆, 李小珍, 等. 面向深度学习的多模态融合技术研究综述[J]. 计算机工程, 2020, 46(5), 1-11.
[9] SUN Yingying, JIA Zhentang, ZHU Haoyu. Survey of Multimodal Deep Learning [J]. Computer Engineering and Applications. 2020, 56(21), 1-10. (in Chinese)
孙影影, 贾振堂, 朱昊宇. 多模态深度学习综述[J]. 计算机工程与应用. 2020, 56(21), 1-10.
[10] JIN Z W, CAO J, GUO H, et al. Multimodal Fusion with Recurrent Neural Networks for Rumor Detection on Microblogs[C]// Proceedings of the 25th ACM international conference on Multimedia. Mountain View, California, USA: ACM, 2017: 795-816.
[11] Devamanyu H, Sruthi G, et al. Self-Attentive Feature-Level Fusion for Multimodal Emotion Detection[C]// Proceedings of International Conference on Multimedia Information Processing and Retrieval 2018. Miami, FL, USA: ACM, 2018: 196-201.
[12] LU Liangfeng, XIE Zhijun, YE Hongwu. Object Recognition Algorithm Based on RGB Feature and Depth Feature Fusing[J]. Computer Engineering, 2016, 42(5), 186-193. (in Chinese)
卢良锋,谢志军,叶宏武. 基于RGB特征与深度特征融合的物体识别算法[J]. 计算机工程, 2016, 42(5), 186-193.
[13] Geng Y., Lin Z., Fu P., Wang W. Rumor Detection on Social Media: A Multi-view Model Using Self-attention Mechanism[C]// Proceedings of International Conference on Computational Science. Berlin: Springer, Cham:ACM, 2019: 339-352.
[14] PENNINGTON J, SOCHER R, CHRISTOPHER D. GloVe: Global Vectors for Word Representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Qatar: Association for Computational Linguistics, 2014: 1532–1543.
[15] DEVLIN J, CHANG M W, et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[C]// Proceedings of the 2019 Conference of the NAC. Minnesota: Association for Computational Linguistics, 2019: 4171–4186.
[16] MIKOLOV T, CHEN K, et al. Efficient Estimation of Word Representations in Vector Space[C]// Proceedings of the International Conference on Learning Representations. Arizona: ACM, 2013:1-8.
[17] Dempster A P. A generalization of Bayesian inference[J]. Journal of the Royal Statal Society, 1968, 30(2): 205-232.
[18] WANG Y Q, MA F L, et al. EANN: Event Adversarial Neural Networks for Multi-Modal Fake News Detection[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: ACM, 2018: 849-857.
[19] Alex G, Greg W, Ivo D. Neural Turing Machines[J]. arXiv preprint arXiv:1410.6247, 2014.
[20] Thang L, Hieu P, Christopher D. Effective Approaches to Attention-based Neural Machine Translation[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal: EMNLP, 2015: 1412-1421.
|