[1] YANG Q, LIU Y, CHEN T J, et al.Federated machine learning:concept and applications[EB/OL].[2021-07-15].https://arxiv.org/pdf/1902.04885.pdf. [2] PAPERNOT N, ABADI M, ERLINGSSON Ú, et al.Semi-supervised knowledge transfer for deep learning from private training data[EB/OL].[2021-07-15].https://arxiv.org/abs/1610.05755. [3] ZHU X D, LI H, YU Y.Blockchain-based privacy preserving deep learning[C]//Proceedings of International Conference on Information Security and Cryptology.Berlin, Germany:Springer, 2018:1-10. [4] BARAI A K, BHADORIA R S, BAGWARI J, et al.A blockchain-based federated learning:concepts and applications[M]//DEKA G C.Multidisciplinary functions of blockchain technology in AI and IoT applications.Hershey, USA:IGI Global Press, 2021:158-177. [5] YANG W, ZHANG Y, WEI Y, et al.Privacy is not free:energy-aware federated learning for mobile and edge intelligence[C]//Proceedings of International Conference on Wireless Communications and Signal Processing.Zhengzhou, China:[s.n.], 2020:1-10. [6] POSNER J, TSENG L, ALOQAILY M, et al.Federated learning in vehicular networks:opportunities and solutions[J].IEEE Network, 2021, 35(2):1-8. [7] GEYER R C, KLEIN T, NABI M.Differentially private federated learning:a client level perspective[EB/OL].[2021-07-15].https://arxiv.org/abs/1712.07557. [8] YOSHIDA N, NISHIO T, MORIKURA M, et al.MAB-based client selection for federated learning with uncertain resources in mobile networks[EB/OL].[2021-07-15].https://arxiv.org/abs/2009.13879. [9] MCMAHAN H B, MOORE E, RAMAGE D, et al.Communication-efficient learning of deep networks from decentralized data[EB/OL].[2021-07-15].https://arxiv.org/pdf/1602.05629.pdf. [10] TRAN N H, BAO W, ZOMAYA A, et al.Federated learning over wireless networks:optimization model design and analysis[C]//Proceedings of IEEE Conference on Computer Communications.Washington D.C., USA:IEEE Press, 2019:1-10. [11] FELIX S, SIMON W, KLAUS-ROBERT M, et al.Robust and communication-efficient federated learning from non-i.i.d.data[J].IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(9):3400-3413. [12] MALEKIJOO A, FADAEIESLAM M J, MALEKIJOU H, et al.FEDZIP:a compression framework for communication-efficient federated learning[EB/OL].[2021-07-15].https://arxiv.org/abs/2102.01593. [13] SHAYAN M, FUNG C, YOON C, et al.Biscotti:a blockchain system for private and secure federated learning[J].IEEE Transactions on Parallel and Distributed Systems, 2020, 99:1-10. [14] CHEN H, ASIF S A, PARK J, et al.Robust blockchained federated learning with model validation and proof-of-stake inspired consensus[EB/OL].[2021-07-15].https://arxiv.org/abs/2101.03300. [15] QU Y Y, POKHREL S R, GARG S, et al.A blockchained federated learning framework for cognitive computing in industry 4.0 networks[J].IEEE Transactions on Industrial Informatics, 2020, 99:1-10. [16] PENG Z, XU J, CHU X, et al.VFChain:enabling verifiable and auditable federated learning via blockchain systems[J].IEEE Transactions on Network Science and Engineering, 2021, 99:1-10. [17] AZAR P D, MICALI S.Rational proofs[C]//Proceedings of the 44th Annual ACM Symposium on Theory of Computing.New York, USA:ACM Press, 2012:1017-1028. [18] 李朋, 陶洋, 许湘扬, 等.基于博弈论的无线传感器网络能耗均衡分簇协议[J].计算机工程, 2018, 44(12):156-162. LI P, TAO Y, XU X Y, et al.Energy consumption balance clustering protocol in wireless sensor network based on game theory[J].Computer Engineering, 2018, 44(12):156-162.(in Chinese) [19] CHEN J, MCCAULEY S, SINGH S.Rational proofs with multiple provers[C]//Proceedings of ACM Conference on Innovations in Theoretical Computer Science.New York, USA:ACM Press, 2016:237-248. [20] 田有亮, 马建峰, 彭长根, 等.秘密共享体制的博弈论分析[J].电子学报, 2011, 39(12):2790-2795. TIAN Y L, MA J F, PENG C G, et al.Game-theoretic analysis for the secret sharing scheme[J].Acta Electronica Sinica, 2011, 39(12):2790-2795.(in Chinese) [21] 李秋贤, 田有亮, 王缵.基于全同态加密的理性委托计算协议[J].电子学报, 2019, 47(2):216-220. LI Q X, TIAN Y L, W Z.Rational delegation computation protocol based on fully homomorphic encryption[J].Acta Electronica Sinica, 2019, 47(2):216-220.(in Chinese) [22] GUO S, HUBACEK P, ROSEN A, et al.Rational arguments:single round delegation with sublinear verification[C]//Proceedings of the 5th Conference on Innovations in Theoretical Computer Science.New York, USA:ACM Press, 2014:523-540. [23] KIM H, PARK J, BENNIS M, et al.On-device federated learning via blockchain and its latency analysis[EB/OL].[2021-07-15].https://arxiv.org/abs/1808.03949. [24] KANG J W, XIONG Z H, NIYATO D, et al.Incentive design for efficient federated learning in mobile networks:a contract theory approach[C]//Proceedings of IEEE VTS Asia Pacific Wireless Communications Symposium.Washington D.C., USA:IEEE Press, 2019:1-10. |