1 |
李朝, 兰海, 魏宪. 基于注意力的毫米波-激光雷达融合目标检测. 计算机应用, 2021, 41(7): 2137- 2144.
URL
|
|
LI C, LAN H, WEI X. Attention-based object detection with millimeter wave radar-lidar fusion. Journal of Computer Applications, 2021, 41(7): 2137- 2144.
URL
|
2 |
李维刚, 陈婷, 田志强. 基于孪生自适应图卷积算法的点云分类与分割. 计算机应用, 2023, 43(11): 3396- 3402.
URL
|
|
LI W G, CHEN T, TIAN Z Q. Point cloud classification and segmentation based on siamese adaptive graph convolution algorithm. Journal of Computer Applications, 2023, 43(11): 3396- 3402.
URL
|
3 |
逄晨曦, 李文辉. 基于注意力改进的自适应空间特征融合目标检测算法. 吉林大学学报(理学版), 2023, 61(3): 557- 566.
URL
|
|
PANG C X, LI W H. Adaptive spatial feature fusion object detection algorithm based on attention improvement. Journal of Jilin University(Science Edition), 2023, 61(3): 557- 566.
URL
|
4 |
|
5 |
CHARLES R Q, HAO S, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2017: 77-85.
|
6 |
QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 2017 International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2017: 5105-5114.
|
7 |
RAN H X, LIU J, WANG C J. Surface representation for point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2022: 18920-18930.
|
8 |
LEE D, LEE J. Regularization strategy for point cloud via rigidly mixed sample[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2021: 15895-15904.
|
9 |
CHEN Y L, HU V T, GAVVES E, et al. PointMixup: augmentation for point clouds. Berlin, Germany: Springer International Publishing, 2020.
|
10 |
ZHANG J L, CHEN L J, OUYANG B, et al. PointCutMix: regularization strategy for point cloud classification. Neurocomputing, 2022, 505, 58- 67.
doi: 10.1016/j.neucom.2022.07.049
|
11 |
XU T B, LIU C L. Data-distortion guided self-distillation for deep neural networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2019, 33: 5565-5572.
|
12 |
ZHAO B R, CUI Q, SONG R J, et al. Decoupled knowledge distillation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2022: 11943-11952.
|
13 |
SUN J C, ZHANG Q Z, KAILKHURA B, et al. Benchmarking robustness of 3D point cloud recognition against common corruptions[EB/OL]. [2023-08-14]. http://arxiv.org/abs/2201.12296.
|
14 |
UY M A, PHAM Q H, HUA B S, et al. Revisiting point cloud classification: a new benchmark dataset and classification model on real-world data[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2019: 1588-1597.
|
15 |
WU Z R, SONG S R, KHOSLA A, et al. 3D ShapeNets: a deep representation for volumetric shapes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2015: 1912-1920.
|
16 |
|
17 |
WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds. ACM Transactions on Graphics, 2019, 38(5): 1- 12.
|
18 |
|
19 |
CATTS H W. The simple view of reading: advancements and false impressions. Remedial and Special Education, 2018, 39(5): 317- 323.
doi: 10.1177/0741932518767563
|
20 |
CHENG S L, CHEN X W, HE X W, et al. PRA-Net: point relation-aware network for 3D point cloud analysis. IEEE Transactions on Image Processing, 2021, 30, 4436- 4448.
doi: 10.1109/TIP.2021.3072214
|
21 |
BERG A, OSKARSSON M, O'CONNOR M. Points to patches: enabling the use of self-attention for 3D shape recognition[C]//Proceedings of the 26th International Conference on Pattern Recognition (ICPR). Washington D. C., USA: IEEE Press, 2022: 528-534.
|
22 |
MA X, QIN C, YOU H X, et al. Rethinking network design and local geometry in point cloud: a simple residual MLP framework[EB/OL]. [2023-08-14]. http://arxiv.org/abs/2202.07123.
|
23 |
WANG C Y, HAN X F, XIAO G Q. PointCMT: an MLP-Transformer network for contrastive learning of point representation[C]//Proceedings of the International Joint Conference on Neural Networks (IJCNN). Washington D. C., USA: IEEE Press, 2023: 1-6.
|
24 |
QIAN G C, LI Y C, PENG H W, et al. PointNeXt: revisiting PointNet++ with improved training and scaling strategies[EB/OL]. [2023-08-14]. http://arxiv.org/abs/2206.04670.
|