1 |
冯洋, 邵晨泽. 神经机器翻译前沿综述. 中文信息学报, 2020, 34 (7): 1- 18.
URL
|
|
FENG Y, SHAO C Z. Frontiers in neural machine translation: a literature review. Journal of Chinese Information Processing, 2020, 34 (7): 1- 18.
URL
|
2 |
|
3 |
张知行, 张佳影, 高大启, 等. 临床检验指标术语库的构建与病历挖掘应用. 中文信息学报, 2020, 34 (12): 100- 110.
URL
|
|
ZHANG Z X, ZHANG J Y, GAO D Q, et al. Construction of clinic indicator terminology base and its application in medical record mining. Journal of Chinese Information Processing, 2020, 34 (12): 100- 110.
URL
|
4 |
游新冬, 杨海翔, 陈海涛, 等. 融合术语信息的新能源专利机器翻译研究. 中文信息学报, 2021, 35 (12): 76-83, 93.
URL
|
|
YOU X D, YANG H X, CHEN H T, et al. Research on new energy patent machine translation integrating terminology information. Journal of Chinese Information Processing, 2021, 35 (12): 76-83, 93.
URL
|
5 |
KOEHN P, ZENS R, DYER C, et al. Moses: open source toolkit for statistical machine translation[C]//Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions. Stroudsburg, USA: Association for Computational Linguistics, 2007: 177-180.
|
6 |
张泽锋, 毛存礼, 余正涛, 等. 融入领域术语词典的司法舆情敏感信息识别. 中文信息学报, 2022, 36 (9): 76-83, 92.
URL
|
|
ZHANG Z F, MAO C L, YU Z T, et al. Identification of sensitive information of judicial public opinion incorporated into domain terminology dictionary. Journal of Chinese Information Processing, 2022, 36 (9): 76-83, 92.
URL
|
7 |
WANG S, TAN Z X, LIU Y. Integrating vectorized lexical constraints for neural machine translation[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2022: 7063-7073.
|
8 |
|
9 |
POST M, VILAR D. Fast lexically constrained decoding with dynamic beam allocation for neural machine translation[EB/OL]. [2022-09-16]. https://arxiv.org/abs/1804.06609.
|
10 |
HU J E, KHAYRALLAH H, CULKIN R, et al. Improved lexically constrained decoding for translation and monolingual rewriting[C]//Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: Association for Computational Linguistics, 2019: 839-850.
|
11 |
SONG K, ZHANG Y, YU H, et al. Code-switching for enhancing NMT with pre-specified translation[C]//Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: Association for Computational Linguistics, 2019: 449-459.
|
12 |
DINU G, MATHUR P, FEDERICO M, et al. Training neural machine translation to apply terminology constraints[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2019: 3063-3068.
|
13 |
WANG K, GU S, CHEN B, et al. TermMind: Alibaba's WMT21 machine translation using terminologies task submission[C]//Proceedings of the 6th Conference on Machine Translation. Stroudsburg, USA: Association for Computational Linguistics, 2021: 851-856.
|
14 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need?[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6000-6010.
|
15 |
DU C, TU Z, JIANG J. Order-agnostic cross entropy for non-autoregressive machine translation[C]//Proceedings of International Conference on Machine Learning. New York, USA: ACM Press, 2021: 2849-2859.
|
16 |
VOITA E, SENNRICH R, TITOV I. The bottom-up evolution of representations in the Transformer: a study with machine translation and language modeling objectives[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2019: 4396-4406.
|
17 |
PASCUAL D, EGRESSY B, MEISTER C, et al. A plug-and-play method for controlled text generation[C]//Proceedings of EMNLP'21. Stroudsburg, USA: Association for Computational Linguistics, 2021: 3973-3997.
|
18 |
DYER C, CHAHUNEAU V, SMITH N A. A simple, fast, and effective reparameterization of IBM Model 2[C]//Proceedings of 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: Association for Computational Linguistics, 2013: 644-648.
|
19 |
CHEN G H, CHEN Y, LI V O K. Lexically constrained neural machine translation with explicit alignment guidance[C]//Proceedings of AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2021: 12630-12638.
|
20 |
SENNRICH R, HADDOW B, BIRCH A. Neural machine translation of rare words with subword units[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2016: 1715-1725.
|
21 |
OTT M, EDUNOV S, BAEVSKI A, et al. Fairseq: a fast, extensible toolkit for sequence modeling[C]//Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2016: 1715-1725.
|
22 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[C]//Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: Association for Computational Linguistics, 2019: 4171-4186.
|
23 |
POST M. A call for clarity in reporting BLEU scores[C]//Proceedings of the 3rd Conference on Machine Translation. Stroudsburg, USA: Association for Computational Linguistics, 2018: 186-191.
|
24 |
ALAM M M I, ANASTASOPOULOS A, BESACIER L, et al. On the evaluation of machine translation for terminology consistency[EB/OL]. [2022-09-16]. https://arxiv.org/abs/2106.11891.
|
25 |
MATTHEW S, BONNIE D, RICH S, et al. A study of translation edit rate with targeted human annotation[C]//Proceedings of the 7th Conference of the Association for Machine Translation in the Americas. Cambridge, USA: Association for Machine Translation in the Americas, 2006: 223-231.
|
26 |
董兴华, 陈丽娟, 周喜, 等. 汉维统计机器翻译中的形态学处理. 计算机工程, 2011, 37 (12): 150- 152.
URL
|
|
DONG X H, CHEN L J, ZHOU X, et al. Morphology processing in Chinese-Uyghur statistical machine translation. Computer Engineering, 2011, 37 (12): 150- 152.
URL
|