[1] 李伟, 黄鹤鸣, 张会云, 等.基于深度多特征融合的CNNs图像分类算法[J].计算机仿真, 2022, 39(2):322-326. LI W, HUANG H M, ZHANG H Y, et al.A CNNs image classification algorithm based on deep fusion of multi-features[J].Computer Simulation, 2022, 39(2):322-326.(in Chinese) [2] 徐海燕.基于通道相似度注意力的图像分类研究[J].信息技术与信息化, 2021(11):78-80. XU H Y.Research on image classification based on channel similarity attention[J].Information Technology and Informatization, 2021(11):78-80.(in Chinese) [3] DENIL M, SHAKIBI B, DINH L, et al.Predicting parameters in deep learning[EB/OL].[2022-02-18].https://arxiv.org/abs/1306.0543. [4] HAN S, MAO H, DALLY W J.Deep compression:compressing deep neural networks with pruning, trained quantization and huffman coding[EB/OL].[2022-02-18].https://arxiv.org/abs/1510.00149v4. [5] LI H, SAMET H, KADAV A, et al.Pruning filters for efficient ConvNets[EB/OL].[2022-02-18].https://arxiv.org/abs/1608.08710v2. [6] FRANKLE J, CARBIN M.The lottery ticket hypothesis:finding sparse, trainable neural networks[EB/OL].[2022-02-18].https://arxiv.org/abs/1803.03635. [7] KWON S J, LEE D, KIM B, et al.Structured compression by weight encryption for unstructured pruning and quantization[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:1906-1915. [8] LEE N, AJANTHAN T, TORR P H S.SNIP:single-shot network pruning based on connection sensitivity[EB/OL].[2022-02-18].https://arxiv.org/abs/1810.02340. [9] HE Y, DING Y H, LIU P, et al.Learning filter pruning criteria for deep convolutional neural networks acceleration[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:2006-2015. [10] LIN M B, JI R R, WANG Y, et al.HRank:filter pruning using high-rank feature map[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:1526-1535. [11] LIN M B, JI R R, ZHANG Y X, et al.Channel pruning via automatic structure search[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence.New York, USA:ACM Press, 2021:673-679. [12] 卢海伟, 袁晓彤.基于层融合特征系数的动态网络结构化剪枝[J].模式识别与人工智能, 2019, 32(11):1051-1059. LU H W, YUAN X T.Dynamic network structured pruning via feature coefficients of layer fusion[J].Pattern Recognition and Artificial Intelligence, 2019, 32(11):1051-1059.(in Chinese) [13] 王彩玲, 王炯, 蒋国平.基于双DDPG的全局自适应滤波器剪枝方法[J].南京邮电大学学报(自然科学版), 2021, 41(5):59-66. WANG C L, WANG J, JIANG G P.Global adaptive filter pruning based on dual DDPG[J].Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition), 2021, 41(5):59-66.(in Chinese) [14] PRAKASH A, STORER J, FLORENCIO D, et al.RePr:improved training of convolutional filters[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:10666-10675. [15] MENG F X, CHENG H, LI K, et al.Filter grafting for deep neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:6599-6607. [16] JEONG J, SHIN J.Training CNNs with selective allocation of channels[EB/OL].[2022-02-18].https://arxiv.org/abs/1905.04509. [17] HE Y, DONG X Y, KANG G L, et al.Asymptotic soft filter pruning for deep convolutional neural networks[J].IEEE Transactions on Cybernetics, 2020, 50(8):3594-3604. [18] 李杉, 许新征.基于双角度并行剪枝的VGG16优化方法[J].计算机科学, 2021, 48(6):227-233. LI S, XU X Z.Parallel pruning from two aspects for VGG16 optimization[J].Computer Science, 2021, 48(6):227-233.(in Chinese) [19] YE J, LU X, LIN Z, et al.Rethinking the smaller-norm-less-informative assumption in channel pruning of convolution layers[EB/OL].[2022-02-18].https://arxiv.org/abs/1802. 00124. [20] KRIZHEVSKY A.Learning multiple layers of features from tiny images[D].Toronto, Canada:University of Toronto, 2009. [21] RUSSAKOVSKY O, DENG J, SU H, et al.ImageNet large scale visual recognition challenge[J].International Journal of Computer Vision, 2015, 115(3):211-252. [22] HE K M, ZHANG X Y, REN S Q, et al.Identity mappings in deep residual networks[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016. [23] HUANG G, LIU Z, VAN DER MAATEN L, et al.Densely connected convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:2261-2269. [24] HOWARD A G, ZHU M, CHEN B, et al.MobileNet:efficient convolutional neural networks for mobile vision applications[EB/OL].[2022-02-18].https://arxiv.org/abs/1704.04861. [25] ZHANG X, ZHOU X, LIN M, et al.ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:6848-6856. |