[1] 苗泰.基于视频的家居环境中人体摔倒检测算法研究[D].吉林:东北电力大学,2021. MIAO T.Research on human fall detection algorithm based on video in home environment[D].Jilin:Northeast Dianli University,2021.(in Chinese) [2] 陈翔.基于加速度传感器的摔倒检测研究[D].福州:福州大学,2018. CHEN X.Research on fall detection based on acceleration sensor[D].Fuzhou:Fuzhou University,2018.(in Chinese) [3] JEFIZA A,PRAMUNANTO E,BOEDINOEGROHO H,et al.Fall detection based on accelerometer and gyroscope using back propagation[C]//Proceedings of the 4th International Conference on Electrical Engineering,Computer Science and Informatics.Washington D.C.,USA:IEEE Press,2017:1-6. [4] DENG Z F,MIN W D,ZOU S.A method for fall detection based on CNN and human elliptical contour motion features[J].Journal of Graphics,2018,39(6):1042-1047. [5] MIN W D,CUI H,RAO H,et al.Detection of human falls on furniture using scene analysis based on deep learning and activity characteristics[J].IEEE Access,2018,6:9324-9335. [6] NÚÑEZ-MARCOS A,AZKUNE G,ARGANDA-CARRERAS I.Vision-based fall detection with convolutional neural networks[J].Wireless Communications and Mobile Computing,2017,5:1-16. [7] XU H J,DAS A,SAENKO K.R-C3D:region convolutional 3D network for temporal activity detection[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2017:5794-5803. [8] FEICHTENHOFER C.X3D:expanding architectures for efficient video recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2020:200-210. [9] FANG H S,XIE S Q,TAI Y W,et al.RMPE:regional multi-person pose estimation[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2017:2353-2362. [10] JOHN M.Spiking neural network based on joint entropy of optical flow features for human action recognition[J].The Visual Computer,2022,38(1):223-237. [11] WANG P,LI W,OGUNBONA P,et al.RGB-D-based human motion recognition with deep learning:a survey[J].Computer Vision and Image Understanding,2018,171:118-139. [12] 卫少洁,周永霞.一种结合Alphapose和LSTM的人体摔倒检测模型[J].小型微型计算机系统,2019,40(9):1886-1890. WEI S J,ZHOU Y X.Human body fall detection model combining Alphapose and LSTM[J].Journal of Chinese Computer Systems,2019,40(9):1886-1890.(in Chinese) [13] ZHANG P F,LAN C L,XING J L,et al.View adaptive recurrent neural networks for high performance human action recognition from skeleton data[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2017:2136-2145. [14] LI C,ZHONG Q Y,XIE D,et al.Skeleton-based action recognition with convolutional neural networks[C]//Proceedings of IEEE International Conference on Multimedia & Expo Workshops.Washington D.C.,USA:IEEE Press,2017:597-600. [15] YAN S J,XIONG Y J,LIN D H.Spatial temporal graph convolutional networks for skeleton-based action recognition[EB/OL].[2022-01-05].https://arxiv.org/pdf/1801.07455.pdf. [16] REDMON J,FARHADI A.YOLOv3:an incremental improvement[EB/OL].[2022-01-05].https://arxiv.org/abs/1804.02767. [17] BEWLEY A,GE Z Y,OTT L,et al.Simple online and realtime tracking[C]//Proceedings of IEEE International Conference on Image Processing.Washington D.C.,USA:IEEE Press,2016:3464-3468. [18] WOJKE N,BEWLEY A,PAULUS D.Simple online and realtime tracking with a deep association metric[C]//Proceedings of IEEE International Conference on Image Processing.Washington D.C.,USA:IEEE Press,2018:3645-3649. [19] MANZI A,DARIO P,CAVALLO F.A human activity recognition system based on dynamic clustering of skeleton data[J].Sensors (Basel,Switzerland),2017,17(5):1100. [20] SONG Y F,ZHANG Z,WANG L.Richly activated graph convolutional network for action recognition with incomplete skeletons[C]//Proceedings of IEEE International Conference on Image Processing.Washington D.C.,USA:IEEE Press,2019:1-5. [21] SHI L,ZHANG Y,CHENG J,et al.Two-stream adaptive graph convolutional networks for skeleton-based action recognition[EB/OL].[2022-01-05].https://arxiv.org/abs/1805.07694. [22] SONG Y F,ZHANG Z,SHAN C F,et al.Stronger,faster and more explainable:a graph convolutional baseline for skeleton-based action recognition[C]//Proceedings of the 28th ACM International Conference on Multimedia.New York,USA:ACM Press,2020:1625-1633. [23] ZHANG P F,LAN C L,ZENG W J,et al.Semantics-guided neural networks for efficient skeleton-based human action recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2020:1109-1118. [24] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[EB/OL].[2022-01-05].https://arxiv.org/abs/2004.10934. [25] ZHOU Z H.A brief introduction to weakly supervised learning[J].National Science Review,2018,5(1):44-53. [26] AUVINET E,ROUGIER C,MEUNIER J,et al.Multiple cameras fall dataset[EB/OL].[2022-01-05].http://www.iro.umontreal.ca/~labimage/Dataset/#:~:text=Multiple%20cameras%20fall%20dataset.%20This%20dataset%20contain%2024,the%20last%202%20ones%20contain%20only%20confounding%20events. [27] MARTÍNEZ-VILLASEÑOR L,PONCE H,BRIEVA J,et al.UP-fall detection dataset:a multimodal approach[J].Sensors(Basel,Switzerland),2019,19(9):1988. [28] FENG W,LIU R,ZHU M.Fall detection for elderly person care in a vision-based home surveillance environment using a monocular camera[J].Signal,Image and Video Processing,2014,8(6):1129-1138. |