1 |
MOSTOFA M, FERDOUS S N, RIGGAN B S, et al. Joint-SRVDNet: joint super resolution and vehicle detection network. IEEE Access, 2020, 8, 82306- 82319.
doi: 10.1109/ACCESS.2020.2990870
|
2 |
NOH J, BAE W, LEE W, et al. Better to follow, follow to be better: towards precise supervision of feature super-resolution for small object detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2020: 9724-9733.
|
3 |
LI Z, ZHANG Y. Hyperspectral anomaly detection via image super-resolution processing and spatial correlation. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59 (3): 2307- 2320.
doi: 10.1109/TGRS.2020.3005924
|
4 |
YOON Y, JEON H G, YOO D, et al. Learning a deep convolutional network for light-field image super-resolution[C]//Proceedings of IEEE International Conference on Computer Vision Workshop. Washington D. C., USA: IEEE Press, 2016: 57-65.
|
5 |
DONG C, LOY C C, TANG X O. Accelerating the super-resolution convolutional neural network[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 391-407.
|
6 |
SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 1874-1883.
|
7 |
KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 1646-1654.
|
8 |
LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C., USA: IEEE Press, 2017: 1132-1140.
|
9 |
ZHANG Y L, TIAN Y P, KONG Y, et al. Residual dense network for image super-resolution[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 2472-2481.
|
10 |
斯捷, 肖雄, 李泾, 等. 基于生成对抗网络的多幅离焦图像超分辨率重建算法. 计算机工程, 2021, 47 (9): 266- 273.
URL
|
|
SI J, XIAO X, LI J, et al. Super-resolution reconstruction algorithm with multi-frame defocused images based on generative adversarial network. Computer Engineering, 2021, 47 (9): 266- 273.
URL
|
11 |
姜玉宁, 李劲华, 赵俊莉. 基于生成式对抗网络的图像超分辨率重建算法. 计算机工程, 2021, 47 (3): 249- 255.
URL
|
|
JIANG Y N, LI J H, ZHAO J L. Image super-resolution reconstruction algorithm based on generative adversarial networks. Computer Engineering, 2021, 47 (3): 249- 255.
URL
|
12 |
CHEN Y B, LIU S F, WANG X L. Learning continuous image representation with local implicit image function[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 8624-8634.
|
13 |
KONG X T, ZHAO H Y, QIAO Y, et al. ClassSR: a general framework to accelerate super-resolution networks by data characteristic[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 12011-12020.
|
14 |
柳聪, 屈丹, 司念文, 等. 基于深度可分离卷积的轻量级图像超分辨率重建. 计算机工程, 2022, 48 (6): 228- 234.
URL
|
|
LIU C, QU D, SI N W, et al. Lightweight image super-resolution reconstruction based on depthwise separable convolution. Computer Engineering, 2022, 48 (6): 228- 234.
URL
|
15 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
16 |
|
17 |
SITZMANN V, MARTEL J N P, BERGMAN A W, et al. Implicit neural representations with periodic activation functions[EB/OL]. [2022-08-01]. https://arxiv.org/abs/2006.09661.
|
18 |
HU X C, MU H Y, ZHANG X Y, et al. Meta-SR: a magnification-arbitrary network for super-resolution[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 1575-1584.
|
19 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Berlin, Germany: Springer, 2018: 3-19.
|
20 |
FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 3141-3149.
|
21 |
AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: dataset and study[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C., USA: IEEE Press, 2017: 1122-1131.
|
22 |
|
23 |
|
24 |
ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[M]// BOISSONNAT J D, CHENIN P, COHEN A, et al. Curves and surfaces. Berlin, Germany: Springer, 2012: 711-730.
|
25 |
MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of the 8th IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2002: 416-423.
|
26 |
DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 764-773.
|
27 |
|