1 |
WALKER J J, DE BEURS K M, WYNNE R H, et al. Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology. Remote Sensing of Environment, 2012, 117, 381- 393.
doi: 10.1016/j.rse.2011.10.014
|
2 |
LI W S, ZHANG X Y, PENG Y D, et al. Spatiotemporal fusion of remote sensing images using a convolutional neural network with attention and multiscale mechanisms. International Journal of Remote Sensing, 2021, 42(6): 1973- 1993.
doi: 10.1080/01431161.2020.1809742
|
3 |
WHITE M A, NEMANI R R. Real-time monitoring and short-term forecasting of land surface phenology. Remote Sensing of Environment, 2006, 104(1): 43- 49.
doi: 10.1016/j.rse.2006.04.014
|
4 |
刘建波, 马勇, 武易天, 等. 遥感高时空融合方法的研究进展及应用现状. 遥感学报, 2016, 20(5): 1038- 1049.
doi: 10.11834/jrs.20166218
|
|
LIU J B, MA Y, WU Y T, et al. Review of methods and applications of high spatiotemporal fusion of remote sensing data. Journal of Remote Sensing, 2016, 20(5): 1038- 1049.
doi: 10.11834/jrs.20166218
|
5 |
李树涛, 李聪妤, 康旭东. 多源遥感图像融合发展现状与未来展望. 遥感学报, 2021, 25(1): 148- 166.
URL
|
|
LI S T, LI C Y, KANG X D. Development status and future prospects of multi-source remote sensing image fusion. National Remote Sensing Bulletin, 2021, 25(1): 148- 166.
URL
|
6 |
GAO F, MASEK J, SCHWALLER M, et al. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2207- 2218.
doi: 10.1109/TGRS.2006.872081
|
7 |
ZHU X L, CHEN J, GAO F, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, 2010, 114(11): 2610- 2623.
doi: 10.1016/j.rse.2010.05.032
|
8 |
ZHUKOV B, OERTEL D, LANZL F, et al. Unmixing-based multisensor multiresolution image fusion. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3): 1212- 1226.
doi: 10.1109/36.763276
|
9 |
ZHU X L, HELMER E H, GAO F, et al. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sensing of Environment, 2016, 172, 165- 177.
doi: 10.1016/j.rse.2015.11.016
|
10 |
HUANG B, SONG H H. Spatiotemporal reflectance fusion via sparse representation. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 3707- 3716.
doi: 10.1109/TGRS.2012.2186638
|
11 |
SONG H H, LIU Q S, WANG G J, et al. Spatiotemporal satellite image fusion using deep convolutional neural networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3): 821- 829.
doi: 10.1109/JSTARS.2018.2797894
|
12 |
LIU X, DENG C W, CHANUSSOT J, et al. StfNet: a two-stream convolutional neural network for spatiotemporal image fusion. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6552- 6564.
doi: 10.1109/TGRS.2019.2907310
|
13 |
TAN Z Y, YUE P, DI L P, et al. Deriving high spatiotemporal remote sensing images using deep convolutional network. Remote Sensing, 2018, 10(7): 1066.
doi: 10.3390/rs10071066
|
14 |
TAN Z, DI L, ZHANG M, et al. An enhanced deep convolutional model for spatiotemporal image fusion. Remote Sensing, 2019, 11(24): 2898.
doi: 10.3390/rs11242898
|
15 |
TAN Z Y, GAO M L, LI X H, et al. A flexible reference-insensitive spatiotemporal fusion model for remote sensing images using conditional generative adversarial network. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60, 5601413.
URL
|
16 |
|
17 |
|
18 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. [2023-07-15]. https://arxiv.org/abs/2010.11929v2.
|
19 |
LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2021: 9992-10002.
|
20 |
LIANG J Y, CAO J Z, SUN G L, et al. SwinIR: image restoration using Swin Transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Washington D. C., USA: IEEE Press, 2021: 1833-1844.
|
21 |
|
22 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 3-19.
|
23 |
JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution[C]// Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 694-711.
|
24 |
|
25 |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600- 612.
doi: 10.1109/TIP.2003.819861
|
26 |
BEAULIEU M, FOUCHER S, GAGNON L. Multi-spectral image resolution refinement using stationary wavelet transform[C]//Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium. Washington D. C., USA: IEEE Press, 2003: 4032-4034.
|
27 |
PIELLA G, HEIJMANS H. A new quality metric for image fusion[C]//Proceedings of the 2003 International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2003: 161-173.
|