[1] YANG J C,WRIGHT J,HUANG T,et al.Image super-resolution as sparse representation of raw image patches[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2008:1-8. [2] TIMOFTE R,DE SMET V,VAN GOOL L.A+:adjusted anchored neighborhood regression for fast super-resolution[C]//Proceedings of ACCV'14.Berlin,Germany:Springer,2014:111-126. [3] YANG J C,WRIGHT J,HUANG T S,et al.Image super-resolution via sparse representation[J].IEEE Transactions on Image Processing,2010,19(11):2861-2873. [4] SCHULTER S,LEISTNER C,BISCHOF H.Fast and accurate image upscaling with super-resolution forests[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:3791-3799. [5] 汤佳欣,陈阳,周孟莹,等.深度学习方法在兴趣点推荐中的应用研究综述[J].计算机工程,2022,48(1):12-23,42. TANG J X,CHEN Y,ZHOU M Y,et al.A survey of studies on deep learning applications in POI recommendation[J].Computer Engineering,2022,48(1):12-23,42.(in Chinese) [6] DONG C,LOY C C,HE K M,et al.Learning a deep convolutional network for image super-resolution[C]//Proceedings of ECCV'14.Berlin,Germany:Springer,2014:184-199. [7] DONG C,LOY C C,TANG X O.Accelerating the super-resolution convolutional neural network[C]//Proceedings of ECCV'16.Berlin,Germany:Springer,2016:391-407. [8] KIM J,LEE J K,LEE K M.Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:1646-1654. [9] TAI Y,YANG J,LIU X M,et al.MemNet:a persistent memory network for image restoration[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2017:4549-4557. [10] LAI W S,HUANG J B,AHUJA N,et al.Deep Laplacian pyramid networks for fast and accurate super-resolution[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:5835-5843. [11] ZHANG K,ZUO W M,ZHANG L.Learning a single convolutional super-resolution network for multiple degradations[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:3262-3271. [12] ZHANG Z D,WANG X R,JUNG C.DCSR:dilated convolutions for single image super-resolution[J].IEEE Transactions on Image Processing,2019,28(4):1625-1635. [13] TIAN C W.Lightweight image super-resolution with enhanced CNN[J].Knowledge-Based Systems,2020,205:106235. [14] 黄伟,冯晶晶,黄遥.基于多通道极深卷积神经网络的图像超分辨率算法[J].计算机工程,2020,46(9):242-247,253. HUANG W,FENG J J,HUANG Y.Super-resolution algorithm for images based on multi-channel extremely deep convolutional neural network[J].Computer Engineering,2020,46(9):242-247,253.(in Chinese) [15] ESMAEILZEHI A,AHMAD M O,SWAMY M N S.MuRNet:a deep recursive network for super resolution of bicubically interpolated images[J].Signal Processing:Image Communication,2021,94:116228. [16] ZHANG Y L,LI K P,LI K,et al.Image super-resolution using very deep residual channel attention networks[C]//Proceedings of ECCV'18.Berlin,Germany:Springer,2018:294-310. [17] 施荣华,金鑫,胡超.基于图注意力网络的方面级别文本情感分析[J].计算机工程,2022,48(2):34-39. SHI R H,JIN X,HU C.Aspect-level text emotion analysis based on graph attention network[J].Computer Engineering,2022,48(2):34-39.(in Chinese) [18] 殷亚博,杨文忠,杨慧婷,等.基于卷积神经网络和KNN的短文本分类算法研究[J].计算机工程,2018,44(7):193-198. YIN Y B,YANG W Z,YANG H T,et al.Research on short text classification algorithm based on convolutional neural network and KNN[J].Computer Engineering,2018,44(7):193-198.(in Chinese) [19] 张顺,龚怡宏,王进军.深度卷积神经网络的发展及其在计算机视觉领域的应用[J].计算机学报,2019,42(3):453-482. ZHANG S,GONG Y H,WANG J J.The development of deep convolution neural network and its applications on computer vision[J].Chinese Journal of Computers,2019,42(3):453-482.(in Chinese) [20] WANG F,JIANG M Q,QIAN C,et al.Residual attention network for image classification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:6450-6458. [21] ZHAO H Y,KONG X T,HE J W,et al.Efficient image super-resolution using pixel attention[C]//Proceedings of ECCV'20.Berlin,Germany:Springer,2020:56-72. [22] LI X,WANG W H,HU X L,et al.Selective kernel networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2019:510-519. [23] TIMOFTE R,AGUSTSSON E,GOOL L V,et al.NTIRE 2017 challenge on single image super-resolution:methods and results[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C.,USA:IEEE Press,2017:1110-1121. [24] BEVILACQUA M,ROUMY A,GUILLEMOT C,et al.Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]//Proceedings of British Machine Vision Conference.Durham,UK:British Machine Vision Association,2012:1-8. [25] ZEYDE R,ELAD M,PROTTER M.On single image scale-up using sparse-representations[M].Berlin,Germany:Springer,2012. [26] MARTIN D,FOWLKES C,TAL D,et al.A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of the 8th IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2001:416-423. |