[1] WANG J D, ZHANG T, SONG J K, et al. A survey on learning to hash[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):769-790. [2] 代亚兰, 何朗, 黄樟灿. 基于稀疏自编码的无监督图像哈希算法[J]. 计算机工程, 2019, 45(5):222-225, 236. DAI Y L, HE L, HUANG Z C. Unsupervised image hashing algorithm based on sparse-autoencoder[J]. Computer Engineering, 2019, 45(5):222-225, 236.(in Chinese) [3] 张仕, 赖会霞, 肖如良, 等. 开放环境多分布特性的局部敏感哈希检索方法[J]. 软件学报, 2022, 33(4):1200-1217. ZHANG S, LAI H X, XIAO R L, et al. Open environmental locality-sensitive hashing retrieval for multiple distributed characteristics[J]. Journal of Software, 2022, 33(4):1200-1217.(in Chinese) [4] WEISS Y, TORRALBA A, FERGUS R. Spectral hashing[C]//Proceedings of Annual Conference on Neural Information Processing Systems. New York,USA:ACM Press,2008:1753-1760. [5] LIU W, MU C, KUMAR S, et al. Discrete graph hashing[C]//Proceedings of Annual Conference on Neural Information Processing Systems. New York,USA:ACM Press,2014:3419-3427. [6] LAI Z H, CHEN Y D, WU J, et al. Jointly sparse hashing for image retrieval[J]. IEEE Transactions on Image Processing, 2018, 27(12):6147-6158. [7] JIN S, YAO H X, ZHOU Q, et al. Unsupervised discrete hashing with affinity similarity[J]. IEEE Transactions on Image Processing, 2021, 30:6130-6141. [8] SHEN F M, SHEN C H, LIU W, et al. Supervised discrete hashing[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2015:37-45. [9] KANG W C, LI W J, ZHOU Z H. Column sampling based discrete supervised hashing[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press,2016:1230-1236. [10] CHEN Y, TIAN Z, ZHANG H, et al. Strongly constrained discrete hashing[J]. IEEE Transactions on Image Processing, 2020, 29(1):3596-3611. [11] ZHANG Z, ZHU X, LU G, et al. Probability ordinal-preserving semantic hashing for large-scale image retrieval[J]. ACM Transactions on Knowledge Discovery from Data, 2021, 15(3):1-22. [12] LAMPERT C H, NICKISCH H, HARMELING S. Learning to detect unseen object classes by between-class attribute transfer[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2009:951-958. [13] XIAN Y Q, LAMPERT C H, SCHIELE B, et al. Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(9):2251-2265. [14] YANG Y, LUO Y, CHEN W, et al. Zero-shot hashing via transferring supervised knowledge[C]//Proceedings of ACM International Conference on Multimedia. New York,USA:ACM Press,2016:1286-1295. [15] XU Y H, YANG Y, SHEN F M, et al. Attribute hashing for zero-shot image retrieval[C]//Proceedings of IEEE International Conference on Multimedia and Expo. Washington D.C.,USA:IEEE Press,2017:133-138. [16] ZHANG H F, LONG Y, SHAO L. Zero-shot hashing with orthogonal projection for image retrieval[J]. Pattern Recognition Letters, 2019, 117:201-209. [17] GUO Y, DING G, HAN J, et al. SitNet:discrete similarity transfer network for zero-shot hashing[C]//Proceedings of International Joint Conference on Artificial Intelligence. New York,USA:ACM Press,2017:1767-1773. [18] SHI Y, NIE X, LIU X, et al. Zero-shot hashing via asymmetric ratio similarity matrix[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(5):5426-5437. [19] WU J, ZHANG T, ZHA Z, et al. Self-supervised domain-aware generative network for generalized zero-shot learning[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2020:12764-12773. [20] ROMERA-PAREDES B, TORR P. An embarrassingly simple approach to zero-shot learning[C]//Proceedings of International Conference on Machine Learning. New York,USA:ACM Press,2015:2152-2161. [21] AKATA Z, PERRONNIN F, HARCHAOUI Z, et al. Label-embedding for image classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(7):1425-1438. [22] MISHRA A, REDDY S K, MITTAL A, et al. A generative model for zero shot learning using conditional variational autoencoders[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2018:2188-2196. [23] XIAN Y Q, SHARMA S, SCHIELE B, et al. F-VAEGAN-D2:a feature generating framework for any-shot learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2019:10275-10284. [24] LIN M B, JI R R, LIU H, et al. Hadamard matrix guided online hashing[J]. International Journal of Computer Vision, 2020, 128(8):2279-2306. [25] RUDIN W. Principles of mathematical analysis[M]. 3rd ed. New York,USA:McGraw-Hill, 1976. [26] FARHADI A, ENDRES I, HOIEM D, et al. Describing objects by their attributes[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2009:1778-1785. [27] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3):211-252. [28] CHANGPINYO S, CHAO W L, GONG B Q, et al. Synthesized classifiers for zero-shot learning[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2016:5327-5336. [29] JIN Z M, LI C, LIN Y, et al. Density sensitive hashing[J]. IEEE Transactions on Cybernetics, 2014, 44(8):1362-1371. [30] GUI J, LIU T L, SUN Z N, et al. Fast supervised discrete hashing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(2):490-496. [31] SHI X S, XING F Y, ZHANG Z Z, et al. A scalable optimization mechanism for pairwise based discrete hashing[J]. IEEE Transactions on Image Processing, 2021, 30:1130-1142. |