[1] LIN Z J, DING G G, HU M Q, et al.Semantics-preserving hashing for cross-view retrieval[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:3864-3872. [2] JIANG Q Y, LI W J.Discrete latent factor model for cross-modal hashing[J].IEEE Transactions on Image Processing, 2019, 28(7):3490-3501. [3] MENG M, WANG H T, YU J, et al.Asymmetric supervised consistent and specific hashing for cross-modal retrieval[J].IEEE Transactions on Image Processing, 2021, 30:986-1000. [4] JIANG Q Y, LI W J.Deep cross-modal hashing[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:3270-3278. [5] LI C, DENG C, LI N, et al.Self-supervised adversarial hashing networks for cross-modal retrieval[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:4242-4251. [6] XU R Q, LI C, YAN J C, et al.Graph convolutional network hashing for cross-modal retrieval[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.[S.l.]:International Joint Conferences on Artificial Intelligence Organization, 2019:982-988. [7] GU W, GU X Y, GU J Z, et al.Adversary guided asymmetric hashing for cross-modal retrieval[C]//Proceedings of 2019 International Conference on Multimedia Retrieval.New York, USA:ACM Press, 2019:159-167. [8] ZHANG J, PENG Y X, YUAN M K.Unsupervised generative adversarial cross-modal hashing[C]//Proceedings of AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI, 2018:1-10. [9] SU S P, ZHONG Z H, ZHANG C.Deep joint-semantics reconstructing hashing for large-scale unsupervised cross-modal retrieval[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:3027-3035. [10] HU H T, XIE L X, HONG R C, et al.Creating something from nothing:unsupervised knowledge distillation for cross-modal hashing[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:3120-3129. [11] LIU S, QIAN S S, GUAN Y, et al.Joint-modal distribution-based similarity hashing for large-scale unsupervised deep cross-modal retrieval[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York, USA:ACM Press, 2020:1379-1388. [12] YANG D J, WU D Y, ZHANG W Q, et al.Deep semantic-alignment hashing for unsupervised cross-modal retrieval[C]//Proceedings of 2020 International Conference on Multimedia Retrieval.New York, USA:ACM Press, 2020:44-52. [13] WANG W W, SHEN Y M, ZHANG H F, et al.Set and Rebase:determining the semantic graph connectivity for unsupervised cross-modal hashing[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence.[S.l.]:International Joint Conferences on Artificial Intelligence Organization, 2020:853-859. [14] YU J, ZHOU H, ZHAN Y B, et al.Deep graph-neighbor coherence preserving network for unsupervised cross-modal hashing[C]//Proceedings of AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI, 2021:4626-4634. [15] DENG J, DONG W, SOCHER R, et al.ImageNet:a large-scale hierarchical image database[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2009:248-255. [16] MIKOLOV T, CHEN K, CORRADO G, et al.Efficient estimation of word representations in vector space[EB/OL].[2022-01-25].https://arxiv.org/abs/1301.3781. [17] KIPF T N, WELLING M.Semi-supervised classification with graph convolutional networks[EB/OL].[2022-01-25].https://arxiv.org/abs/1609.02907. [18] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2017:1-10. [19] BLEI D M, NG A Y, JORDAN M I.Latent Dirichlet allocation[J].The Journal of Machine Learning Research, 2003, 3:993-1022. [20] LE Q, MIKOLOV T.Distributed representations of sentences and documents[C]//Proceedings of the 31st International Conference on Machine Learning.New York, USA:ACM Press, 2014:1188-1196. [21] CHEN T, KORNBLITH S, NOROUZI M, et al.A simple framework for contrastive learning of visual representations[C]//Proceedings of the 37th International Conference on Machine Learning.New York, USA:ACM Press, 2020:1597-1607. [22] HE K M, FAN H Q, WU Y X, et al.Momentum contrast for unsupervised visual representation learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:9726-9735. [23] HUISKES M J, LEW M S.The MIR flickr retrieval evaluation[C]//Proceedings of the 1st ACM International Conference on Multimedia Information Retrieval.New York, USA:ACM Press, 2008:39-43. [24] CHUA T S, TANG J H, HONG R C, et al.NUS-WIDE:a real-world Web image database from National University of Singapore[C]//Proceedings of ACM International Conference on Image and Video Retrieval.New York, USA:ACM Press, 2009:9. [25] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2022-01-25].https://arxiv.org/abs/1409.1556. [26] KINGMA D P, BA J.Adam:a method for stochastic optimization[EB/OL].[2022-01-25].https://arxiv.org/abs/1412.6980. [27] KUMAR S, UDUPA R.Learning hash functions for cross-view similarity search[C]//Proceedings of the 22nd International Joint Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2011:1360-1365. [28] LIU H, JI R R, WU Y J, et al.Cross-modality binary code learning via fusion similarity hashing[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:6345-6353. [29] DING G G, GUO Y C, ZHOU J L.Collective matrix factorization hashing for multimodal data[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2014:2083-2090. [30] ZHOU J L, DING G G, GUO Y C.Latent semantic sparse hashing for cross-modal similarity search[C]//Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval.New York, USA:ACM Press, 2014:415-424. |