[1] SU Shuzhi.Theoretical research and application of multi-view canonical correlation analysis[D].Wuxi:Jiangnan University,2017.(in Chinese) 苏树智.多视图典型相关分析的理论研究和应用[D].无锡:江南大学,2017. [2] RUPING S,SCHEFFER T.Learning with multiple views[J].Multiple Views,2005,27(1):203-233. [3] XU Chang,TAO Dacheng,XU Chao.A survey on multi-view learning[EB/OL].[2018-10-20].http://www.oalib.com/paper/4064776. [4] ZHOU Zhihua,WANG Jue.Machine learning and its applications[M].Beijing:Tsinghua University Press,2011.(in Chinese) 周志华,王珏.机器学习及其应用[M].北京:清华大学出版社,2011. [5] COLWELL R P.Applied multivariate statistical analysis[M].Berlin,Germany:Springer,2012. [6] NIELSENA A.Multiset canonical correlations analysis and multispectral,truly multi-temporal remote sensing data[J].IEEE Transactions on Image Processing,2002,11(3):293-305. [7] YAROWSKY D.Unsupervised word sense disambiguation rivaling supervised methods[C]//Proceedings of IEEE Annual Meeting of the Association for Computational Linguistics.Washington D.C.,USA:IEEE Press,1995:189-196. [8] LIU Yanxun.Multi-view learning research and its algorithm improvement[D].Xi’an:Xidian University of Electronic Technology,2015.(in Chinese) 刘彦勋.多视图学习研究及其算法改进[D].西安:西安电子科技大学,2015. [9] CHEN Xiaohong.Generalized correlation analysis research of data dimensionality reduction[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2011.(in Chinese) 陈晓红.数据降维的广义相关分析研究[D].南京:南京航空航天大学,2011. [10] BELLMAN R.Adaptive control processes:a guided tour[M].Princeton,USA:Princeton University Press,1961. [11] YANG Pei,GAO Wei.Multi-view discriminant transfer learning[C]//Proceedings of International Joint Conference on Artificial Intelligence.[S.1.]:AAAI Press,2013:1848-1854. [12] TAN Ben.Multi-transfer:transfer learning with multiple views and multiple sources[J].Statistical Analysis and Data Mining,2014,7(4):282-293. [13] ZHANG Dan,HE Jingrui,LIU Yan,et al.Multi-view transfer learning with a large margin approach[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2011:1208-1216. [14] LUO Yong’en,HU Jicheng,XU Qian.Multimodal correlation feature processing method based on hypergraph[J].Computer Engineering,2017,43(1):226-230.(in Chinese) 罗永恩,胡继承,徐茜.基于超图的多模态关联特征处理方法[J].计算机工程,2017,43(1):226-230. [15] GONEN M,GONEN G B,GURGEN F.Bayesian multi-view dimensionality reduction for learning predictive subspaces[J].Frontiers in Artificial Intelligence & Applications,2014,263:387-392. [16] EATON E,DESJANDINS M,JACOB S.Multi-view clustering with constraint propagation for learning with an incomplete mapping between views[C]//Proceedings of ACM International Conference on Information and Knowledge Management.New York,USA:ACM Press,2010:125-136. [17] LIU Jianwei,LI Shuangcheng,LUO Xionglin.Research of sampling-based multi-modal distribution clustering algorithm[J].Computer Engineering,2010,36(24):153-155.(in Chinese) 刘建伟,李双成,罗雄麟.基于抽样的多模态分布聚类算法研究[J].计算机工程,2010,36(24):153-155. [18] LI Yeqing,NIE Feiping,HUANG Heng,et al.Large-scale multi-view spectral clustering via bipartite graph[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence.[S.1.]:AAAI Press,2015:568-575. [19] DU Mingyang,BI Daping,WANG Shuliang.Multiple target tracking algorithm based on adaptive IMM algorithm in clutter[J].Modern Radar,2018,40(7):47-53.(in Chinese) 杜明洋, 毕大平,王树亮.杂波背景下自适应IMM机动目标跟踪算法[J].现代雷达,2018,40(7):47-53. [20] DING Xuan.Multimodal biometric identification tech-nology and its standardization trends[J].computer knowledge and technology,2017,13(36):153-154.(in Chinese) 丁璇.多模态生物特征识别技术及其标准化动态[J].电脑知识与技术, 2017, 13(36):153-154. [21] SUN Shiliang.Multi-view laplacian support vector machines[J].Applied Intelligence,2013,41(4):209-222. [22] TAO Hong,HOU Chengping,NIE Feiping,et al.Scalable multi-view semi-supervised classification via adaptive regression[J].IEEE Transactions on Image Processing,2017,26(9):4283-4296. [23] XIE Xijiong,SUN Shiliang.Multi-view Laplacian twin support vector machines[J].Applied Intelligence,2014,41(4):1059-1068. [24] ZHANG Liang,MA Bingpeng.Adaptively unified semi-supervised learning for cross-modal retrieval[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.Washington D.C.,USA:IEEE Press,2017:354-365. [25] JIN Xin,ZHUANG Fuzhen,WANG Shuhui,et al.Shared structure learning for multiple tasks with multiple views[C]//Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases.Berlin,Germany:Springer,2013:353-368. [26] CHEN Jianhui,TANG Lei,LIU Jun,et al.A convex formulation for learning shared structures from multiple tasks[C]//Proceedings of International Conference on Machine Learning.New York,USA:ACM Press,2009:137-144. [27] CAO Xiaochun,ZHANG Changqiang,FU Huazhu,et al.Diversity-induced multi-view subspace clustering[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:586-594. [28] WILCOX R R.Testing the hypothesis of independence two stes of variates[J].Multivariate Behavioral Research,1995,30(2):213-225. [29] ANDERSON T W.Relations between two sets of variates[J].Biometrike,1936,28(3/4):151-161. [30] HOTELING H.Relations between two sets of variates[J].Biometrika,1936,28(3/4):321-377. [31] EFRON B.Canonical analysis of several sets of variables[J].Biometrika,1971,58(3):433-451. [32] SUN Tingkai,CHEN Songcan,YANG Jingyu,et al.A novel method of combined feature extraction for recognition[C]//Proceedings of the 8th IEEE International Conference on Data Mining.[S.1.]:IEEE Computer Society,2008:1043-1048 [33] GAO Lei,QI Lin,CHEN Enqing,et al.Discriminative multiple canonical correlation analysis for multi-feature information fusion[C]//Proceedings of IEEE ISM’12.Washington D.C.,USA:IEEE Press,2012:36-43. [34] MELZER T,REITER M,BISCHOF H.Kernel canonical correlation analysis[J].Journal of Financial Economic Policy,2001,6(2):179-196. [35] SUN Tingkai,CHEN Songcan,JIN Zhong,et al.Kernelized discriminative canonical correlation analysis[C]//Proceedings of International Conference on Wavelet Analysis and Pattern Recognition.Washington D.C.,USA:IEEE Press,2008:1283-1287. [36] YU Kai,YU Shipeng.Multi-output regularized feature projection[J].IEEE Transactions on Knowledge and Data Engineering,2006,18(12):1600-1613. [37] PENG Yan,ZHANG Daoqiang,ZHANG Jianchuan.A new canonical correlation analysis algorithm with local discrimina-tion[J].Neural Processing Letters,2010,31(1):1-15. [38] SHARMA A,KUMAR A,DAUME H,et al.Generalized multi-view analysis:a discriminative latent space[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.[S.1.]:IEEE Computer Society,2012:2160-2167. [39] KIM T K,KITTLER J,CIPOLLA R.Discriminative learning and recognition of image set classes using canonical correlations[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(6):1005-1018. [40] ZHENG Wenming,ZHOU Xiaoyan,ZOU Cairong,et al.Facial expression recognition using kernel canonical correlation analysis[J].IEEE Transactions on Neural Networks,2006,17(1):233-238. [41] VLASSIS N,MOTOMURA Y,KROSE B.Supervised linear feature extraction for mobile robot localization[C]//Proceedings of IEEE International Conference on Robotics and Automation.Washington D.C.,USA:IEEE Press,2000:2979-2984. [42] MELZER T,REITER M,BICSHOF H.Appearance models based on kernel canonical correlation analysis[J].Pattern Recognition,2003,36(9):1961-1971. [43] ABRAHAM B,MEROLA G.Dimensionality reduction approach to multivariate prediction[J].Canadian Journal of Statistics,2001,29(2):191-200. [44] ZHANG Fan.Partial differential equation and edge detection based image denoising algorithm[J].Computer Engineering and Design, 2014,35(2):562-566.(in Chinese) 张帆.基于偏微分方程与边缘检测的图像去噪算法[J].计算机工程与设计,2014,35(2):562-566. [45] HARDOON D,SZEDMAK S,SHAWE-TAYLOR J.Canonical correlation analysis:an overview with application to learning methods[J].Neural Computation,2004,16(12):2639-2664. [46] LI Y,SHAWE-TAYLOR J.Using KCCA for Japanese English cross-language information retrieval and document classification[J].Journal of Intelligent Information Systems,2006,27(2):117-133. [47] FUKUMIZU K,BACH F R.Statistical consistency of kernel canonical correlation analysis[J].Journal of Machine Learning Research,2007(8):361-383. [48] VAPNIK V N.An overview of statistical learning theory[J].IEEE Transactions on Neural Networks,1999,10(5):988-999. [49] MELZER T,REITER M,BISCHOF H.Kernel canonical correlation analysis[J].Journal of Financial Economic Policy,2012,6(2):179-196. [50] MIKA S,RATSCH G,WESTON J,et al.Fisher discriminant analysis with kernels[C]//Proceedings of IEEE Workshop on Neural Networks for Signal Processing.Washington D.C.,USA:IEEE Press,1999:41-48. [51] BURGES C J C,SMOLA A J.Advances in kernel methods:support vector learning[M].[S.1.]:MIT Press,1999. [52] ARAKI T,HINO H,AKAHO S.A kernel method to extract common features based on mutual information[M].Berlin,Germany:Springer,2014:26-34. [53] LONG Mingsheng,WANG Jianmin,DING Guiguang,et al.Transfer joint matching for unsupervised domain adaptation[C]//Proceedings of International Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2014:1410-1417. [54] BELHUNEUR P N,HESPANHA J P,KRIEGMAN D J.Fisherfaces:recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,19(7):711-720. [55] KIM T K,KITTLER J,CIPOLLA R.Learning discriminative canonical correlations for object recognition with image sets[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2006:251-262. [56] FUKUI K,YAMAGUCHI O.Face recognition using multi-viewpoint patterns for robot vision[C]//Proceedings of the 20th International Symposium on Robotics Research.Berlin,Germany:Springer,2005:192-201. [57] YAMAGUCHI O,FUKUI K,MAEDA K.Face recognition using temporal image sequence[C]//Proceedings of the 3rd IEEE International Conference on Automatic Face and Gesture Recognition.Washington D.C.,USA:IEEE Press,1998:318-326. [58] WOLF L,SHASHUA A.Learning over sets using kernel principal angles[J].Journal of Machine Learning Research,2004,4(6):913-931. [59] KIM T K,ARANDJELOVIC O,CIPOLLA R.Boosted manifold principal angles for image set-based recognition[J].Pattern Recognition,2007,40(9):2475-2484. [60] BRESSAN M,VITRIA J.Nonparametric discriminant analysis and nearest neighbor classification[J].Pattern Recognition Letters,2003,24(15):2743-2749. [61] KAN Meina,SHAN Shiguang,ZHANG Haihong,et al.Multi-view discriminant analysis[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2012:808-821. [62] DUDA R O,HART P E,STORK D G.Pattern classification[M].[S.1.]:Wiley-Interscience,2001. [63] YOU Xingge,XU,Jiamiao,YUAN Wei,et al.Multi-view common component discriminant analysis for cross-view classification[J].Pattern Recognition,2019,92:37-51. [64] XIE Xijiong, SUN Shiliang.Multi-view twin support vector machines[J].Intelligent Data Analysis,2015,19(4):701-712. [65] SUN Tingkai.Research and application of enhanced canonical correlation analysis[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2006.(in Chinese) 孙廷凯.增强型典型相关分析研究与应用[D].南京:南京航空航天大学,2006. [66] SUN Shiliang,CHAO Guoqing.Multi-view maximum entropy discrimination[C]//Proceedings of the 23th International Joint Conference on Artificial Intelligence.Washington D.C.,USA:IEEE Press,2013:1706-1712. [67] SIM T,BAKER S,BSAT M.The CMU pose,illumination,and expression database[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(12):1615-1618. [68] PHILLIPS P J,MOON H,RIZVI,S.A,et al.The FERET evaluation methodology for face-recognition algorithms[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(10):1090-1104. [69] LI S Z,LEI Z,AO M.The HFB face database for heterogeneous face biometrics research[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2009:1-8. [70] SAMARIA F S,HARTER A C.Parameterization of a stochastic model for human face identification[C]//Proceedings of the 2nd IEEE Workshop on Applications of Computer Vision.Washington D.C.,USA:IEEE Press,1994:138-142. [71] HORIKAWA Y.Use of autocorrelation kernels in kernel canonical correlation analysis for texture classification[C]//Proceedings of International Conference on Neural Information Processing.Berlin,Germany:Springer,2004:1235-1240. [72] TENENBAUM J B,SILVA V D,LANGFORD J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290:2319-2323. [73] MU Lisheng,LÜ Yingchun.Face recognition method based on sparse representation and feature fusion[J].Modern Electronics Technique,2018,41(9):83-86.(in Chinese) 木立生,吕迎春.基于稀疏表示与特征融合的人脸识别方法[J].现代电子技术,2018,41(9):83-86. [74] LU Yichao,FOSTER D P.Large scale canonical correlation analysis with iterative least squares[C]//Proceedings of International Conference on Neural Information Processing Systems.[S.1.]: MIT Press,2014:91-99. [75] PARKHOMENKO E,TRITCHLER D,BEYENE J.Sparse canonical correlation analysis with application to genomic data integration[J].Statistical Applications in Genetics and Molecular Biology,2009,8(1):1-34. [76] DU Changshun,HUANG Lei.Sentiment analysis with piecewise convolution neural network[J].Computer Engineering and Science,2017,39(1):173-179.(in Chinese) 杜昌顺,黄磊.分段卷积神经网络在文本情感分析中的应用[J].计算机工程与科学,2017,39(1):173-179. [77] YU Donghang,ZHANG Baoming,GUO Haitao,et al.Joint salient feature and convolutional neural network for ship detection in remote sensing images[J].Journal of Image and Graphics,2018,23(12):1947-1958.(in Chinese) 余东行,张保明,郭海涛,等.联合显著性特征与卷积神经网络的遥感影像舰船检测[J].中国图象图形学报,2018,23(12):1947-1958. [78] ANDREW G,ARORA R,BILMES J,et al.Deep canonical correlation analysis[C]//Proceedings of 30th International Conference on Machine Learning.Georgia,USA:[s.n.],2013:1247-1255. [79] LI Shaoyun,JIANG Yuan,ZHOU Zhuihua.Partial multi-view clustering[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence.[S.1.]:AAAI Press,2014:1968-1974. [80] SHAO W,HE L,PHILIP S Y.Multiple incomplete views clustering via weighted nonnegative matrix factorization with L2,1 regularization[C]//Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases.Berlin,Germany:Springer,2015:318-334. [81] LUO Y,TAO D,RAMAMOHANARAO K,et al.Tensor canonical correlation analysis for multi-view dimension reduction[J].IEEE transactions on Knowledge and Data Engineering,2015,27(11):3111-3124. |