1 |
AUM P K , BRANDSHAFT R , BRANDSHAFT D , et al. Controlling plasma charge damage in advanced semiconductor manufacturing. Challenge of small feature size device, large chip size, and large wafer size. IEEE Transactions on Electron Devices, 1998, 45 (3): 722- 730.
doi: 10.1109/16.661234
|
2 |
WOLFIRE M G , VALLINI L , CHEVANCE M . Photodissociation and X-ray-dominated regions. Annual Review of Astronomy and Astrophysics, 2022, 60, 247- 318.
doi: 10.1146/annurev-astro-052920-010254
|
3 |
MOURI M, KATO Y, YASUKAWA H, et al. A study of using nonnegative matrix factorization to detect solder-voids from radiographic images of solder[C]//Proceedings of the 23rd IEEE International Symposium on Industrial Electronics. Washington D. C., USA: IEEE Press, 2014: 1074-1079.
|
4 |
NUANPRASERT S , LEE K W , MURID A H M , et al. Enhancement of BGA-void defect detection in poor contrast X-Ray images using conformal mapping. ICIC Express Letters, Part B, Applications: An International Journal of Research and Surveys, 2016, 7 (1): 105- 110.
URL
|
5 |
|
6 |
罗东亮, 蔡雨萱, 杨子豪, 等. 工业缺陷检测深度学习方法综述. 中国科学(信息科学), 2022, 52 (6): 1002- 1039.
URL
|
|
LUO D L , CAI Y X , YANG Z H , et al. Survey on industrial defect detection with deep learning. Scientia Sinica(Informationis), 2022, 52 (6): 1002- 1039.
URL
|
7 |
LI Y , LIU S Q , LI C M , et al. Automated defect detection of insulated gate bipolar transistor based on computed laminography imaging. Microelectronics Reliability, 2020, 115, 113966.
doi: 10.1016/j.microrel.2020.113966
|
8 |
PANG S L , CHEN M Y , TA S W , et al. Void and solder joint detection for chip resistors based on X-ray images and deep neural networks. Microelectronics Reliability, 2022, 135, 114587.
doi: 10.1016/j.microrel.2022.114587
|
9 |
HUANG R , ZHAN D , YANG X , et al. ATNet: a defect detection framework for X-ray images of DIP chip lead bonding. Micromachines, 2023, 14 (7): 1375.
doi: 10.3390/mi14071375
|
10 |
WANG J , LIN B , LI G M , et al. YOLO-xray: a bubble defect detection algorithm for chip X-ray images based on improved YOLOv5. Electronics, 2023, 12 (14): 3060.
doi: 10.3390/electronics12143060
|
11 |
景庄伟, 管海燕, 彭代峰, 等. 基于深度神经网络的图像语义分割研究综述. 计算机工程, 2020, 46 (10): 1- 17.
doi: 10.19678/j.issn.1000-3428.0058018
|
|
JING Z W , GUAN H Y , PENG D F , et al. Survey of research in image semantic segmentation based on deep neural network. Computer Engineering, 2020, 46 (10): 1- 17.
doi: 10.19678/j.issn.1000-3428.0058018
|
12 |
张鑫, 姚庆安, 赵健, 等. 全卷积神经网络图像语义分割方法综述. 计算机工程与应用, 2022, 58 (8): 45- 57.
doi: 10.3778/j.issn.1002-8331.2109-0091
|
|
ZHANG X , YAO Q A , ZHAO J , et al. Image semantic segmentation based on fully convolutional neural network. Computer Engineering and Applications, 2022, 58 (8): 45- 57.
doi: 10.3778/j.issn.1002-8331.2109-0091
|
13 |
RONNEBERGER O , FISCHER P , BROX T . U-Net: convolutional networks for biomedical image segmentation. Berlin, Germany: Springer, 2015: 234- 241.
|
14 |
BADRINARAYANAN V , KENDALL A , CIPOLLA R . SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (12): 2481- 2495.
doi: 10.1109/TPAMI.2016.2644615
|
15 |
LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical Vision Transformer using Shifted Windows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 10012-10022.
|
16 |
JAIN J, SINGH A, ORLOV N, et al. SeMask: semantically masked transformers for semantic segmentation[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2023: 752-761.
|
17 |
ZHU L, WANG X J, KE Z H, et al. BiFormer: vision transformer with Bi-level routing attention[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 10323-10333.
|
18 |
BPOWN T, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Proceedings of NIPS'20. Cambridge, USA: MIT Press, 2020: 1877-1901.
|
19 |
|
20 |
WU J D, FU R, FANG H H, et al. Medical SAM adapter: adapting segment anything model for medical image segmentation[EB/OL]. [2023-09-20]. https://arxiv.org/abs/2304.12620.
|
21 |
谭骏珊, 李雅芳, 秦姣华. 基于推理注意力机制的二阶段网络图像修复. 电讯技术, 2022, 62 (11): 1545- 1553.
doi: 10.3969/j.issn.1001-893x.2022.11.001
|
|
TAN J S , LI Y F , QIN J H . Two-stage network image inpainting based on reasoning attention mechanism. Telecommunication Engineering, 2022, 62 (11): 1545- 1553.
doi: 10.3969/j.issn.1001-893x.2022.11.001
|
22 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
23 |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 11534-11542.
|
24 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 13713-13722.
|
25 |
|
26 |
郑秋梅, 徐林康, 王风华, 等. 基于改进自注意力机制的金字塔场景解析网络. 计算机工程, 2023, 49 (1): 242- 249.
doi: 10.19678/j.issn.1000-3428.0063652
|
|
ZHENG Q M , XU L K , WANG F H , et al. Pyramid scene parsing network based on improved self-attention mechanism. Computer Engineering, 2023, 49 (1): 242- 249.
doi: 10.19678/j.issn.1000-3428.0063652
|
27 |
CHEN L C , ZHU Y K , PAPANDREOU G , et al. Encoder-decoder with atrous separable convolution for semantic image segmentation. Berlin, Germany: Springer, 2018: 833- 851.
|
28 |
蔡莉, 王淑婷, 刘俊晖, 等. 数据标注研究综述. 软件学报, 2020, 31 (2): 302- 320.
doi: 10.13328/j.cnki.jos.005977
|
|
CAI L , WANG S T , LIU J H , et al. Survey of data annotation. Journal of Software, 2020, 31 (2): 302- 320.
doi: 10.13328/j.cnki.jos.005977
|
29 |
胡帅, 李华玲, 郝德琛. 改进UNet的多级边缘增强医学图像分割网络. 计算机工程, 2024, 50 (4): 286- 293.
doi: 10.19678/j.issn.1000-3428.0067779
|
|
HU S , LI H L , HAO D C . Improved multistage edge enhanced medical image segmentation network of UNet. Computer Engineering, 2024, 50 (4): 286- 293.
doi: 10.19678/j.issn.1000-3428.0067779
|