1 |
LI M H, LI S, LI L D, et, al. Spatial feature calibration and temporal fusion for effective one-stage video instance segmentation[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 11210-11219.
|
2 |
YIN J B, WANG W G, MENG Q H, et al. A unified object motion and affinity model for online multi-object tracking[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 6767-6776.
|
3 |
CHEN Y H, CAO Y, HU H, et al. Memory enhanced global-local aggregation for video object detection[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 10334-10343.
|
4 |
WANG L J, LU H C, WANG Y F, et al. Learning to detect salient objects with image-level supervision[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 3796-3805.
|
5 |
ZENG Y, ZHUGE Y Z, LU H C, et al. Multi-source weak supervision for saliency detection[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 6067-6076.
|
6 |
ZHANG J, YU X, LI A X, et al. Weakly-supervised salient object detection via scribble annotations[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 12543-12552.
|
7 |
GAO S Y, ZHANG W, WANG Y, et al. Weakly-supervised salient object detection using point supervision[C]//Proceedings of the AAAI Conference on Artificial Intelligence. [S. l.]: AAAI Press, 2022: 670-678.
|
8 |
|
9 |
PIAO Y R, WANG J, ZHANG M, et al. MFNet: multi-filter directive network for weakly supervised salient object detection[C]//Proceedings of International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2022: 4116-4125.
|
10 |
PIAO Y R, WU W, ZHANG M, et al. Noise-sensitive adversarial learning for weakly supervised salient object detection[J/OL]. IEEE Transactions on Multimedia, 2022: 1-10[2022-06-29]. https://ieeexplore.ieee.org/document/9716868.
|
11 |
陈威, 李决龙, 邢建春, 等. 融合前景信息的背景模板优化显著性检测算法. 计算机工程, 2019, 45(1): 221-225, 232
URL
|
|
CHEN W, LI J L, XING J C, et al. Background template optimization saliency detection algorithm fusing with foreground information. Computer Engineering, 2019, 45(1): 221-225, 232
URL
|
12 |
肖锋, 李茹娜. 语义信息引导下的显著目标检测算法. 计算机工程, 2019, 45(4): 248- 253.
URL
|
|
XIAO F, LI R N. Salient object detection algorithm under guidance of semantic information. Computer Engineering, 2019, 45(4): 248- 253.
URL
|
13 |
PANG Y W, ZHAO X Q, ZHANG L H, et al. Multi-scale interactive network for salient object detection[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 9410-9419.
|
14 |
YANG S, LIN W S, LIN G S, et al. Progressive self-guided loss for salient object detection. IEEE Transactions on Image Processing, 2021, 30, 8426- 8438.
doi: 10.1109/TIP.2021.3113794
|
15 |
LI J, SU J M, XIA C Q, et al. Salient object detection with purificatory mechanism and structural similarity loss. IEEE Transactions on Image Processing, 2021, 30, 6855- 6868.
doi: 10.1109/TIP.2021.3099405
|
16 |
KE Y Y, TSUBONO T. Recursive contour-saliency blending network for accurate salient object detection[C]//Proceedings of Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2022: 1360-1370.
|
17 |
YU S Y, ZHANG B F, XIAO J M, et al. Structure-consistent weakly supervised salient object detection with local saliency coherence[C]//Proceedings of AAAI Conference on Artificial Intelligence. [S. l.]: AAAI Press, 2021: 3234-3242.
|
18 |
ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 2921-2929.
|
19 |
|
20 |
AHN J, CHO S, KWAK S. Weakly supervised learning of instance segmentation with inter-pixel relations[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 2204-2213.
|
21 |
|
22 |
GAO S H, CHENG M M, ZHAO K, et al. Res2Net: a new multi-scale backbone architecture. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652- 662.
doi: 10.1109/TPAMI.2019.2938758
|
23 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 1-9.
|
24 |
|
25 |
YAN Q, XU L, SHI J P, et al. Hierarchical saliency detection[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2013: 1155-1162.
|
26 |
LI G B, YU Y Z. Visual saliency based on multiscale deep features[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 5455-5463.
|
27 |
YANG C, ZHANG L H, LU H C, et al. Saliency detection via graph-based manifold ranking[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2013: 3166-3173.
|
28 |
EVERINGHAM M, GOOL L, WILLIAMS C K I, et al. The PASCAL Visual Object Classes (VOC) challenge. International Journal of Computer Vision, 2010, 88(2): 303- 338.
doi: 10.1007/s11263-009-0275-4
|
29 |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2009: 248-255.
|
30 |
FAN D P, CHENG M M, LIU Y, et al. Structure-measure: a new way to evaluate foreground maps[C]//Proceedings of International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 4558-4567.
|
31 |
FAN D P, GONG C, CAO Y, et al. Enhanced-alignment measure for binary foreground map evaluation[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. New York, USA: ACM Press, 2018: 698-704.
|
32 |
ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2009: 1597-1604.
|
33 |
PERAZZI F, KRÄHENBÜHL P, PRITCH Y, et al. Saliency filters: contrast based filtering for salient region detection[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2012: 733-740.
|
34 |
ZHANG L Q, ZHANG Q, ZHAO R. Progressive dual-attention residual network for salient object detection. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(9): 5902- 5915.
doi: 10.1109/TCSVT.2022.3164093
|