1 |
仲颖. 消除隐患: 如何加强非机动车管理. 检察风云, 2023,(1): 36- 37.
|
|
ZHONG Y. Eliminating hidden dangers: how to strengthen the management of non-motor vehicles. Prosecutorial View, 2023,(1): 36- 37.
|
2 |
AL-SHEMARRY M S, LI Y, ABDULLA S. An efficient texture descriptor for the detection of license plates from vehicle images in difficult conditions. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(2): 553- 564.
doi: 10.1109/TITS.2019.2897990
|
3 |
凌翔, 黄榜, 黄良俊, 等. 基于改进二维离散小波变换的多车牌定位. 重庆交通大学学报(自然科学版), 2020, 39(2): 16- 21.
|
|
LING X, HUANG B, HUANG L J, et al. Multi-license plate location based on improved two-dimensional discrete wavelet transform. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39(2): 16- 21.
|
4 |
谭鑫平, 高志辉, 韩航迪, 等. 基于改进YOLOv5的荧光图像细胞智能检测研究. 半导体光电, 2023, 44(5): 709- 716.
|
|
TAN X P, GAO Z H, HAN H D, et al. Intelligent detection of cells in fluorescence images based on improved YOLOv5. Semiconductor Optoelectronics, 2023, 44(5): 709- 716.
|
5 |
WU D L, JIANG S, ZHAO E L, et al. Detection of camellia oleifera fruit in complex scenes by using YOLOv7 and data augmentation. Applied Sciences, 2022, 12(22): 11318.
doi: 10.3390/app122211318
|
6 |
李松江, 耿兰兰, 王鹏. 基于改进Yolov4的车辆目标检测. 计算机工程, 2023, 49(4): 272- 280.
doi: 10.19678/j.issn.1000-3428.0062943
|
|
LI S J, GENG L L, WANG P. Vehicle target detection based on improved Yolov4. Computer Engineering, 2023, 49(4): 272- 280.
doi: 10.19678/j.issn.1000-3428.0062943
|
7 |
李嘉豪, 闵卫东, 陈炯缙, 等. 一种复杂场景下高精度交通标志检测模型. 计算机工程, 2023, 49(11): 311- 320.
doi: 10.19678/j.issn.1000-3428.0066372
|
|
LI J H, MIN W D, CHEN J J, et al. A high precision traffic sign detection model in complex scenes. Computer Engineering, 2023, 49(11): 311- 320.
doi: 10.19678/j.issn.1000-3428.0066372
|
8 |
SHI H L, ZHAO D N. License plate recognition system based on improved YOLOv5 and GRU. IEEE Access, 2023, 11, 10429- 10439.
|
9 |
|
10 |
XIA T, ZHANG R Z, ZHANG Y J, et al. Application of YOLOv7 and Transformer structures to small object (license plate) detection in complex traffic scenes[C]//Proceedings of the 4th International Conference on Machine Learning, Big Data and Business Intelligence. Washington D. C., USA: IEEE Press, 2022: 128-131.
|
11 |
AHMED S U, MAISHA F B F, HOSSAM-E-HAIDER M. Bangla license plate detection and recognition system with YOLOv7 and improved custom OCR engine[C]//Proceedings of the 4th International Conference on Emerging Research in Electronics, Computer Science and Technology. Washington D. C., USA: IEEE Press, 2022: 1-7.
|
12 |
庄建军, 叶振兴. 基于改进YOLOv5m的电动车骑行者头盔与车牌检测方法. 南京信息工程大学学报, 2024, 16(1): 1- 10.
|
|
ZHUANG J J, YE Z X. Helmet and license plate detection for electric bike rider based on improved YOLOv5m. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2024, 16(1): 1- 10.
|
13 |
WEI C, TAN Z, QING Q, et al. Fast helmet and license plate detection based on lightweight YOLOv5. Sensors (Basel, Switzerland), 2023, 23(9): 4335.
|
14 |
MAHMOOD Z, KHAN K, KHAN U, et al. Towards automatic license plate detection. Sensors (Basel, Switzerland), 2022, 22(3): 1245.
|
15 |
SLIMANI I, ZAARANE A, AL OKAISHI W, et al. An automated license plate detection and recognition system based on wavelet decomposition and CNN. Array, 2020, 8, 100040.
|
16 |
GONG Y X, DENG L J, TAO S, et al. Unified Chinese license plate detection and recognition with high efficiency. Journal of Visual Communication and Image Representation, 2022, 86, 103541.
|
17 |
SILVA S M, JUNG C R. Real-time license plate detection and recognition using deep convolutional neural networks. Journal of Visual Communication and Image Representation, 2020, 71, 102773.
|
18 |
HU X, LI H, LI X R, et al. MobileNet-SSD MicroScope using adaptive error correction algorithm: real-time detection of license plates on mobile devices. IET Intelligent Transport Systems, 2020, 14(2): 110- 118.
|
19 |
CHEN S L, TIAN S, MA J W, et al. End-to-end trainable network for degraded license plate detection via vehicle-plate relation mining. Neurocomputing, 2021, 446, 1- 10.
|
20 |
|
21 |
FENG J H, WANG X L, LV H. Non-motor vehicle illegal behavior discrimination and license plate detection based on real-time video. Journal of Physics: Conference Series, 2020, 1544(1): 012105.
|
22 |
梁誉耀. 基于深度学习的电瓶车头盔检测及车牌识别算法研究[D]. 长沙: 湖南大学, 2022.
|
|
LIANG Y Y. Research on helmet detection and license plate recognition algorithm for electric bicycle based on deep learning[D]. Changsha: Hunan University, 2022. (in Chinese)
|
23 |
吴静. 基于深度学习的电动车车牌识别研究[D]. 柳州: 广西科技大学, 2022.
|
|
WU J. Research on electric vehicle license plate recognition based on deep learning[D]. Liuzhou: Guangxi University of Science and Technology, 2022. (in Chinese)
|
24 |
LI X, ZHANG J, YANG Y, et al. SFNet: faster, accurate, and domain agnostic semantic segmentation via semantic flow[EB/OL]. [2023-09-05]. https://arxiv.org/pdf/2207.04415v1.
|
25 |
|
26 |
HUANG L, LI W, SHEN L, et al. YOLOCS: object detection based on dense channel compression for feature spatial solidification[EB/OL]. [2023-09-05]. https://arxiv.org/abs/2305.04170.
|
27 |
|
28 |
EVERINGHAM M, ALI ESLAMI S M, VAN GOOL L, et al. The pascal visual object classes challenge: a retrospective. International Journal of Computer Vision, 2015, 111(1): 98- 136.
|
29 |
ZHANG S S, BENENSON R, SCHIELE B. CityPersons: a diverse dataset for pedestrian detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 3213-3221.
|
30 |
CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 3213-3223.
|
31 |
|
32 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988.
|
33 |
DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 6569-6578.
|
34 |
TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 9627-9636.
|
35 |
|
36 |
|
37 |
YUAN X, CHENG G, YAN K B, et al. Small object detection via coarse-to-fine proposal generation and imitation learning[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2023: 6317-6327.
|