1 |
盛家文. 基于机器视觉的农业虫害测报研究[D]. 杭州: 浙江理工大学, 2020.
|
|
SHENG J W. Research on agricultural pest forecasting based on machine vision[D]. Hangzhou: Zhejiang Sci-Tech University, 2020. (in Chinese)
|
2 |
候瑞环, 杨喜旺, 王智超, 等. 一种基于YOLOv4-TIA的林业害虫实时检测方法. 计算机工程, 2022, 48(4): 255- 261.
doi: 10.19678/j.issn.1000-3428.0060563
|
|
HOU R H, YANG X W, WANG Z C, et al. A real-time detection method for forestry pests based on YOLOv4-TIA. Computer Engineering, 2022, 48(4): 255- 261.
doi: 10.19678/j.issn.1000-3428.0060563
|
3 |
梁勇, 邱荣洲, 李志鹏, 等. 基于YOLO v5和多源数据集的水稻主要害虫识别方法. 农业机械学报, 2022, 53(7): 250- 258.
|
|
LIANG Y, QIU R Z, LI Z P, et al. Identification method of major rice pests based on YOLOv5 and multi-source datasets. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(7): 250- 258.
|
4 |
LI W Y, WANG D J, LI M, et al. Field detection of tiny pests from sticky trap images using deep learning in agricultural greenhouse. Computers and Electronics in Agriculture, 2021, 183, 106048.
doi: 10.1016/j.compag.2021.106048
|
5 |
刘颖, 刘红燕, 范九伦, 等. 基于深度学习的小目标检测研究与应用综述. 电子学报, 2020, 48(3): 590- 601.
doi: 10.3969/j.issn.0372-2112.2020.03.024
|
|
LIU Y, LIU H Y, FAN J L, et al. A survey of research and application of small object detection based on deep learning. Acta Electronica Sinica, 2020, 48(3): 590- 601.
doi: 10.3969/j.issn.0372-2112.2020.03.024
|
6 |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2014: 740-755.
|
7 |
CHEN C Y, LIU M Y, TUZEL O, et al. R-CNN for small object detection[C]//Proceedings of Asian Conference on Computer Vision. Berlin, Germany: Springer, 2017: 214-230.
|
8 |
WU J Q, XU S B. From point to region: accurate and efficient hierarchical small object detection in low-resolution remote sensing images. Remote Sensing, 2021, 13(13): 2620.
doi: 10.3390/rs13132620
|
9 |
RABBI J, RAY N, SCHUBERT M, et al. Small-object detection in remote sensing images with end-to-end edge-enhanced GAN and object detector network. Remote Sensing, 2020, 12(9): 1432.
doi: 10.3390/rs12091432
|
10 |
LI Y Y, HUANG Q, PEI X A, et al. Cross-layer attention network for small object detection in remote sensing imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 2148- 2161.
doi: 10.1109/JSTARS.2020.3046482
|
11 |
LIAN J, YIN Y H, LI L H, et al. Small object detection in traffic scenes based on attention feature fusion. Sensors, 2021, 21(9): 3031.
doi: 10.3390/s21093031
|
12 |
邹慧海, 侯进. 改进SSD算法的道路小目标检测研究. 计算机工程, 2022, 48(5): 281- 288.
doi: 10.19678/j.issn.1000-3428.0061499
|
|
ZOU H H, HOU J. Research on road small target detection with improved SSD algorithm. Computer Engineering, 2022, 48(5): 281- 288.
doi: 10.19678/j.issn.1000-3428.0061499
|
13 |
窦允冲, 侯进, 曾雷鸣, 等. 基于反馈机制与空洞卷积的道路小目标检测网络. 计算机工程, 2023, 49(1): 287- 294.
doi: 10.19678/j.issn.1000-3428.0063575
|
|
DOU Y C, HOU J, ZENG L M, et al. Road small target detection network based on feedback mechanism and dilated convolution. Computer Engineering, 2023, 49(1): 287- 294.
doi: 10.19678/j.issn.1000-3428.0063575
|
14 |
李颀. 桃树病害和害虫图像检测系统的研究与实现[D]. 泰安: 山东农业大学, 2021.
|
|
LI Q. Research and implementation of image detection system for peach diseases and pests[D]. Taian: Shandong Agricultural University, 2021. (in Chinese)
|
15 |
WANG F Y, WANG R J, XIE C J, et al. Fusing multi-scale context-aware information representation for automatic in-field pest detection and recognition. Computers and Electronics in Agriculture, 2020, 169, 105222.
doi: 10.1016/j.compag.2020.105222
|
16 |
JIAO L, XIE C J, CHEN P, et al. Adaptive feature fusion pyramid network for multi-classes agricultural pest detection. Computers and Electronics in Agriculture, 2022, 195, 106827.
doi: 10.1016/j.compag.2022.106827
|
17 |
HE Y, ZHOU Z Y, TIAN L H, et al. Brown rice planthopper (Nilaparvata lugens Stal) detection based on deep learning. Precision Agriculture, 2020, 21(6): 1385- 1402.
doi: 10.1007/s11119-020-09726-2
|
18 |
DU J M, LIU L, LI R, et al. Towards densely clustered tiny pest detection in the wild environment. Neurocomputing, 2022, 490, 400- 412.
doi: 10.1016/j.neucom.2021.12.012
|
19 |
|
20 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 13713-13722.
|
21 |
TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 10781-10790.
|
22 |
|
23 |
ZHANG H Y, WANG Y, DAYOUB F, et al. VarifocalNet: an IoU-aware dense object detector[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 8514-8523.
|
24 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8759-8768.
|
25 |
ZHENG Z H, WANG P, REN D W, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Transactions on Cybernetics, 2022, 52(8): 8574- 8586.
doi: 10.1109/TCYB.2021.3095305
|
26 |
WANG R J, LIU L, XIE C J, et al. AgriPest: a large-scale domain-specific benchmark dataset for practical agricultural pest detection in the wild. Sensors, 2021, 21(5): 1601.
doi: 10.3390/s21051601
|
27 |
EVERINGHAM M, GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 2010, 88(2): 303- 338.
|
28 |
BELL S, ZITNICK C L, BALA K, et al. Inside-outside Net: detecting objects in context with skip pooling and recurrent neural networks[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 2874-2883.
|
29 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 21-37.
|
30 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|