1 |
BRACHMANN E, CAVALLARI T, PRISACARIU V A. Accelerated coordinate encoding: learning to relocalize in minutes using RGB and poses[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 5044-5053.
|
2 |
WANG J K, WANG P, DAI D Y, et al. Regression forest based RGB-D visual relocalization using coarse-to-fine strategy. IEEE Robotics and Automation Letters, 2020, 5(3): 4431- 4438.
doi: 10.1109/LRA.2020.3000429
|
3 |
KENDALL A, GRIMES M, CIPOLLA R. PoseNet: a convolutional network for real-time 6-DOF camera relocalization[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2015: 2938-2946.
|
4 |
SHAVIT Y, FERENS R, KELLER Y. Learning multi-scene absolute pose regression with transformers[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, IEEE Press, 2021: 2733-2742.
|
5 |
LASKAR Z, MELEKHOV I, KALIA S, et al. Camera relocalization by computing pairwise relative poses using convolutional neural network[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 929-938.
|
6 |
TURKOGLU M O, BRACHMANN E, SCHINDLER K, et al. Visual camera re-localization using graph neural networks and relative pose supervision[C]//Proceedings of International Conference on 3D Vision. Washington D. C., USA: IEEE Press, 2021: 145-155.
|
7 |
ZHOU Q J, SATTLER T, POLLEFEYS M, et al. To learn or not to learn: visual localization from essential matrices[C]//Proceedings of IEEE International Conference on Robotics and Automation. Washington D. C., USA: IEEE Press, 2020: 3319-3326.
|
8 |
SHOTTON J, GLOCKER B, ZACH C, et al. Scene coordinate regression forests for camera relocalization in RGB-D images[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2013: 2930-2937.
|
9 |
BRACHMANN E, KRULL A, NOWOZIN S, et al. DSAC: differentiable RANSAC for camera localization[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 6684-6692.
|
10 |
BRACHMANN E, ROTHER C. Learning less is more-6D camera localization via 3D surface regression[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4654-4662.
|
11 |
BRACHMANN E, ROTHER C. Visual camera re-localization from RGB and RGB-D images using DSAC. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 5847- 5865.
|
12 |
ZHOU L, LUO Z X, SHEN T W, et al. KFNet: learning temporal camera relocalization using Kalman filtering[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 4919-4928.
|
13 |
LI X T, WANG S Z, ZHAO Y, et al. Hierarchical scene coordinate classification and regression for visual localization[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 11983-11992.
|
14 |
XIE T, DAI K, WANG K, et al. A deep feature aggregation network for accurate indoor camera localization. IEEE Robotics and Automation Letters, 2022, 7(2): 3687- 3694.
doi: 10.1109/LRA.2022.3146946
|
15 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
16 |
孔韦韦, 田乔鑫, 滕金保, 等. 融合注意力机制的混合神经网络文本情感分析模型. 电讯技术, 2023, 63(6): 781- 789.
|
|
KONG W W, TIAN Q X, TENG J B, et al. A hybrid neural network text sentiment analysis model with attention mechanism. Telecommunication Engineering, 2023, 63(6): 781- 789.
|
17 |
XIE T, WANG K, LI R F, et al. PANet: a pixel-level attention network for 6D pose estimation with embedding vector features. IEEE Robotics and Automation Letters, 2022, 7(2): 1840- 1847.
doi: 10.1109/LRA.2021.3136873
|
18 |
LIN S F, WANG Z R, LING Y G, et al. E2EK: end-to-end regression network based on keypoint for 6D pose estimation. IEEE Robotics and Automation Letters, 2022, 7(3): 6526- 6533.
doi: 10.1109/LRA.2022.3174261
|
19 |
SCHONBERGER J L, FRAHM J M. Structure-from-motion revisited[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 4104-4113.
|
20 |
SHEN S H. Accurate multiple view 3D reconstruction using patch-based stereo for large-scale scenes. IEEE Transactions on Image Processing, 2013, 22(5): 1901- 1914.
doi: 10.1109/TIP.2013.2237921
|
21 |
DETONE D, MALISIEWICZ T, RABINOVICH A. SuperPoint: self-supervised interest point detection and description[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 224-236.
|
22 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
23 |
LOWE D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91- 110.
doi: 10.1023/B:VISI.0000029664.99615.94
|
24 |
RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//Proceedings of International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2011: 2564-2571.
|
25 |
DUSMANU M, ROCCO I, PAJDLA T, et al. D2-Net: a trainable CNN for joint detection and description of local features[EB/OL]. [2023-09-01]. https://arxiv.org/pdf/1905.03561.
|
26 |
ZHAO X M, WU X M, MIAO J Y, et al. ALIKE: accurate and lightweight keypoint detection and descriptor extraction[EB/OL]. [2023-09-01]. https://arxiv.org/pdf/2112.02906.
|
27 |
HE J F, GAO Y, ZHANG T Z, et al. D2Former: jointly learning hierarchical detectors and contextual descriptors via agent-based transformers[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 2904-2914.
|
28 |
PASZKE A, GROSS S, MASSA F, et al. PyTorch: an imperative style, high-performance deep learning library[C]//Proceedings of NIPS'19. Cambridge, USA: MIT Press, 2019: 32-40.
|
29 |
|
30 |
IZADI S, KIM D, HILLIGES O, et al. KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera[C]//Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology. New York, USA: ACM Press, 2011: 559-568.
|
31 |
LIU R, LEHMAN J, MOLINA P, et al. An intriguing failing of convolutional neural networks and the coordconv solution[C]//Proceedings of NIPS'18. Cambridge, USA: MIT Press, 2018: 256-267.
|
32 |
|
33 |
ZHANG J, SINGH S. LOAM: lidar odometry and mapping in real-time. Robotics, 2014, 2(9): 1- 9.
|