[1] 高新波, 莫梦竟成, 汪海涛, 等.小目标检测研究进展[J].数据采集与处理, 2021, 36(3):391-417. GAO X B, MO M J C, WANG H T, et al.Recent advances in small object detection[J].Journal of Data Acquisition and Processing, 2021, 36(3):391-417.(in Chinese) [2] 谷永立, 宗欣欣.基于深度学习的目标检测研究综述[J].现代信息科技, 2022, 6(11):76-81. GU Y L, ZONG X X.A review of object detection study based on deep learning[J].Modern Information Technology, 2022, 6(11):76-81.(in Chinese) [3] CHEN C, LIU M Y, TUZEL O, et al.R-CNN for small object detection[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2016:214-230. [4] KRISHNA H, JAWAHAR C V.Improving small object detection[C]//Proceedings of the 4th IAPR Conference on Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:340-345. [5] ZHANG W, WANG S, THACHAN S, et al.Deconv R-CNN for small object detection on remote sensing images[C]//Proceedings of IEEE International Geoscience and Remote Sensing Symposium.Washington D.C., USA:IEEE Press, 2018:2483-2486. [6] 赵加坤, 孙俊, 韩睿, 等.基于改进的Faster RCNN遥感图像目标检测[J].计算机应用与软件, 2022, 39(5):192-196, 290. ZHAO J K, SUN J, HAN R, et al.Object detection based on improved Faster RCNN for remote sensing image[J].Computer Applications and Software, 2022, 39(5):192-196, 290.(in Chinese) [7] 贾可心, 马正华, 朱蓉, 等.注意力机制改进轻量SSD模型的海面小目标检测[J].中国图象图形学报, 2022, 27(4):1161-1175. JIA K X, MA Z H, ZHU R, et al.Attention-mechanism-based light single shot multiBox detector modelling improvement for small object detection on the sea surface[J].Journal of Image and Graphics, 2022, 27(4):1161-1175.(in Chinese) [8] HAN J M, DING J, XUE N, et al.ReDet:a rotation-equivariant detector for aerial object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:2785-2794. [9] ZAND M, ETEMAD A, GREENSPAN M.Oriented bounding boxes for small and freely rotated objects[J].IEEE Transactions on Geoscience and Remote Sensing, 2022, 60(5):1-15. [10] YU D H, XU Q, GUO H T, et al.Anchor-free arbitrary-oriented object detector using box boundary-aware vectors[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15:2535-2545. [11] ZHU X K, LÜ S C, WANG X, et al.TPH-YOLOv5:improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision Workshops.Washington D.C., USA:IEEE Press, 2021:2778-2788. [12] FU H X, SONG G Q, WANG Y C.Improved YOLOv4 marine target detection combined with CBAM[J].Symmetry, 2021, 13(4):623. [13] BENJUMEA A, TEETI I, CUZZOLIN F, et al.YOLO-Z:improving small object detection in YOLOv5 for autonomous vehicles[EB/OL].[2022-09-01].https://arxiv.org/abs/2112.11798. [14] WANG C Y, BOCHKOVSKIY A, LIAO H Y M.YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL].[2022-09-01].https://arxiv.org/abs/2207.02696. [15] YU J, ZHANG W.Face mask wearing detection algorithm based on improved YOLO-v4[J].Sensors, 2021, 21(9):3263. [16] SONG Q, LI S, BAI Q, et al.Object detection method for grasping robot based on improved YOLOv5[J].Micromachines, 2021, 12(11):1273. [17] NIU Z Y.A review on the attention mechanism of deep learning[J].Neurocomputing, 2021, 452:48-62. [18] BRAUWERS G, FRASINCAR F.A general survey on attention mechanisms in deep learning[EB/OL].[2022-09-01].https://arxiv.org/abs/2203.14263. [19] ZHOU D F, FANG J, SONG X B, et al.IoU loss for 2D/3D object detection[C]//Proceedings of 2019 International Conference on 3D Vision.Washington D.C., USA:IEEE Press, 2019:85-94. [20] REZATOFIGHI H, TSOI N, GWAK J, et al.Generalized intersection over union:a metric and a loss for bounding box regression[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:658-666. [21] ZHENG Z H, WANG P, LIU W, et al.Distance-IoU loss:faster and better learning for bounding box regression[J].Artificial Intelligence, 2020, 34(7):12993-13000. [22] ZHENG Z H, WANG P, REN D W, et al.Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J].IEEE Transactions on Cybernetics, 2022, 52(8):8574-8586. [23] DAI Z H, LIU H X, LE Q V, et al.CoAtNet:marrying convolution and attention for all data sizes[EB/OL].[2022-09-01].https://arxiv.org/abs/2106.04803. [24] PAN X R, GE C J, LU R, et al.On the integration of self-attention and convolution[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2022:805-815. [25] GEVORGYAN Z.SIoU loss:more powerful learning for bounding box regression[EB/OL].[2022-09-01].https://arxiv.org/abs/2205.12740. |