1 |
孙戈, 曾立雄, 钱法文, 等. 鸟类监测技术现状与发展趋势. 地理信息世界, 2022, 29 (6): 26- 29.
URL
|
|
SUN G, ZENG L X, QIAN F W, et al. Current status and development trend of bird diversity monitoring technology. Geomatics World, 2022, 29 (6): 26- 29.
URL
|
2 |
GIL-TENA A, SAURA S, BROTONS L. Effects of forest composition and structure on bird species richness in a Mediterranean context: implications for forest ecosystem management. Forest Ecology and Management, 2007, 242 (2/3): 470- 476.
doi: 10.1016/j.foreco.2007.01.080
|
3 |
SEKERCIOǦLU C H, DAILY G C, EHRLICH P R. Ecosystem consequences of bird declines. Biological Sciences, 2004, 101 (52): 18042- 18047.
doi: 10.1073/pnas.0408049101
|
4 |
乔玉, 钱昆, 赵子平. 基于机器听觉的鸟声识别的中文研究综述. 复旦学报(自然科学版), 2020, 59 (3): 375- 380.
URL
|
|
QIAO Y, QIAN K, ZHAO Z P. A review of Chinese studies on bird sound recognition based on machine hearing. Journal of Fudan (Natural Science Edition), 2020, 59 (3): 375- 380.
URL
|
5 |
MPORAS I, GANCHEV T, KOCSIS O, et al. Automated acoustic classification of bird species from real-field recordings[C]//Proceedings of the 24th International Conference on Tools with Artificial Intelligence. Washington D. C., USA: IEEE Press, 2012: 778-781.
|
6 |
QIAO Y, QIAN K, ZHAO Z P. Learning higher representations from bioacoustics: a sequence-to-sequence deep learning approach for bird sound classification. Berlin, Germany: Springer International Publishing, 2020.
|
7 |
屈丹, 杨绪魁, 闫红刚, 等. 低资源少样本连续语音识别最新进展. 郑州大学学报(工学版), 2023, 44 (4): 1- 9.
URL
|
|
QU D, YANG X K, YAN H G, et al. Recent advances in continuous speech recognition with low resources and few samples. Journal of Zhengzhou University (Engineering Edition), 2023, 44 (4): 1- 9.
URL
|
8 |
CHANG P C, CHEN Y S, LEE C H. MS-SincResNet: joint learning of 1D and 2D kernels using multi-scale SincNet and ResNet for music genre classification[C]//Proceedings of the 2021 International Conference on Multimedia Retrieval. New York, USA: ACM Press, 2021: 29-36.
|
9 |
PENG N, CHEN A B, ZHOU G X, et al. Environment sound classification based on visual multi-feature fusion and GRU-AWS. IEEE Access, 2020, 8, 191100- 191114.
doi: 10.1109/ACCESS.2020.3032226
|
10 |
陈莎莎, 李应. 结合时-频纹理特征的随机森林分类器应用于鸟声识别. 计算机应用与软件, 2014, 31 (1): 154-157, 161.
doi: 10.3969/j.issn.1000-386x.2014.01.040
|
|
CHEN S S, LI Y. Applying random forest classifier combined with time-frequency texture features to bird sounds recognition. Computer Applications and Software, 2014, 31 (1): 154-157, 161.
doi: 10.3969/j.issn.1000-386x.2014.01.040
|
11 |
杜孟洋, 王红斌, 普祥和. 融入词性自注意力机制的方面级情感分类方法. 吉林大学学报(理学版), 2023, 61 (6): 1375- 1386.
URL
|
|
DU M Y, WANG H B, PU X H. Aspect-level sentiment classification method incorporating part-of-speech self-attention mechanism. Journal of Jilin University (Science Edition), 2023, 61 (6): 1375- 1386.
URL
|
12 |
李怀城, 杨道武, 温治芳, 等. 基于Inception-CSA深度学习模型的鸟鸣分类. 华中农业大学学报, 2023, 42 (3): 97- 104.
URL
|
|
LI H C, YANG D W, WEN Z F, et al. Birdsong classification based on Inception-CSA deep learning model. Journal of Huazhong Agricultural University, 2023, 42 (3): 97- 104.
URL
|
13 |
KOGAN J A, MARGOLIASH D. Automated recognition of bird song elements from continuous recordings using dynamic time warping and hidden Markov models: a comparative study. The Journal of the Acoustical Society of America, 1998, 103 (4): 2185- 2196.
doi: 10.1121/1.421364
|
14 |
SOMERVUO P, HARMA A, FAGERLUND S. Parametric representations of bird sounds for automatic species recognition. IEEE Transactions on Audio, Speech, and Language Processing, 2006, 14 (6): 2252- 2263.
doi: 10.1109/tasl.2006.872624
|
15 |
LEE C H, HSU S B, SHIH J L, et al. Continuous birdsong recognition using Gaussian mixture modeling of image shape features. IEEE Transactions on Multimedia, 2013, 15 (2): 454- 464.
URL
|
16 |
ADAVANNE S, DROSSOS K, ÇAKIR E, et al. Stacked convolutional and recurrent neural networks for bird audio detection[C]//Proceedings of the 25th European Signal Processing Conference (EUSIPCO). Washington D. C., USA: IEEE Press, 2017: 1729-1733.
|
17 |
KONG Q Q, XU Y, PLUMBLEY M D. Joint detection and classification convolutional neural network on weakly labelled bird audio detection[C]//Proceedings of the 25th European Signal Processing Conference (EUSIPCO). Washington D. C., USA: IEEE Press, 2017: 1749-1753.
|
18 |
XU W T, ZHANG X, YAO L N, et al. A multi-view CNN-based acoustic classification system for automatic animal species identification. Ad Hoc Networks, 2020, 102, 102115.
URL
|
19 |
NANNI L, MAGUOLO G, PACI M. Data augmentation approaches for improving animal audio classification. Ecological Informatics, 2020, 57, 101084.
URL
|
20 |
GUPTA G, KSHIRSAGAR M, ZHONG M, et al. Comparing recurrent convolutional neural networks for large scale bird species classification. Scientific Reports, 2021, 11, 17085.
URL
|
21 |
PERMANA S D H, SAPUTRA G, ARIFITAMA B, et al. Classification of bird sounds as an early warning method of forest fires using Convolutional Neural Network (CNN) algorithm. Journal of King Saud University(Computer and Information Sciences), 2022, 34 (7): 4345- 4357.
URL
|
22 |
SANCHEZ F J B, HOSSAIN M R, ENGLISH N B, et al. Bioacoustic classification of avian calls from raw sound waveforms with an open-source deep learning architecture. Scientific Reports, 2021, 11, 15733.
URL
|
23 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2016: 770-778.
|
24 |
DING X H, ZHANG X Y, HAN J G, et al. Diverse branch block: building a convolution as an inception-like unit[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2021: 10881-10890.
|
25 |
ZHANG Q L, YANG Y B. SA-Net: shuffle attention for deep convolutional neural networks[C]//Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Washington D. C., USA: IEEE Press, 2021: 2235-2239.
|
26 |
CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2017: 1800-1807.
|
27 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
28 |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 11531-11539.
|
29 |
ZHANG X, CHEN A B, ZHOU G X, et al. Spectrogram-frame linear network and continuous frame sequence for bird sound classification. Ecological Informatics, 2019, 54, 101009.
URL
|
30 |
LIU Z H, CHEN W J, CHEN A B, et al. Birdsong classification based on multi feature channel fusion. Multimedia Tools and Applications, 2022, 81 (11): 15469- 15490.
URL
|