[1] 石赫, 杨群, 刘绍翰, 等.基于深度学习的电网故障预案信息抽取研究[J].计算机科学, 2020, 47(S2):52-56. SHI H, YANG Q, LIU S H, et al.Study on information extraction of power grid fault emergency pre-plans based on deep learning[J].Computer Science, 2020, 47(S2):52-56.(in Chinese) [2] 邢毅雪, 朱永华, 高海燕, 等.基于注意力机制的远程监督实体关系抽取[J].上海大学学报(自然科学版), 2021, 27(5):983-992. XING Y X, ZHU Y H, GAO H Y, et al.Distant supervision for relation extraction via attention CNNs[J].Journal of Shanghai University(Natural Science Edition), 2021, 27(5):983-992.(in Chinese) [3] ZHONG Z X, CHEN D Q.A frustratingly easy approach for entity and relation extraction[EB/OL].[2021-10-05].https://arxiv.org/abs/2010.12812. [4] WANG J, LU W.Two are better than one:joint entity and relation extraction with table-sequence encoders[C]//Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing.Washington D.C., USA:IEEE Press, 2020:125-136. [5] 唐敏.基于深度学习的中文实体关系抽取方法研究[D].成都:西南交通大学, 2018. TANG M.Research on Chinese entity relation extraction based on deep learning[D].Chengdu:Southwest Jiaotong University, 2018.(in Chinese) [6] KAMBHATLA N.Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations[EB/OL].[2021-10-05].https://aclanthology.org/P04-3022.pdf. [7] MINTZ M, BILLS S, SNOW R, et al.Distant supervision for relation extraction without labeled data[EB/OL].[2021-10-05].https://web.stanford.edu/~jurafsky/mintz.pdf. [8] HU Z K, CAO Y X, HUANG L F, et al.How knowledge graph and attention help? A quantitative analysis into bag-level relation extraction[EB/OL].[2021-10-05].https://arxiv.org/abs/2107.12064. [9] RIEDEL S, YAO L M, MCCALLUM A.Modeling relations and their mentions without labeled text[EB/OL].[2021-10-05].https://maroo.cs.umass.edu/getpdf.php?id=931. [10] 余小康, 陈岭, 郭敬, 等.结合从句级远程监督与半监督集成学习的关系抽取方法[J].模式识别与人工智能, 2017, 30(1):54-63. YU X K, CHEN L, GUO J, et al.Relation extraction method combining clause level distant supervision and semi-supervised ensemble learning[J].Pattern Recognition and Artificial Intelligence, 2017, 30(1):54-63.(in Chinese) [11] HASEGAWA T, SEKINE S, GRISHMAN R.Discovering relations among named entities from large corpora[C]//Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics.[S.l.]:ACL, 2004:415-422. [12] WEI Z P, SU J L, WANG Y, et al.A novel cascade binary tagging framework for relational triple extraction[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.[S.l.]:ACL, 2020:1476-1488. [13] HANG T T, FENG J, WU Y R, et al.Joint extraction of entities and overlapping relations using source-target entity labeling[J].Expert Systems with Applications, 2021, 177:114853. [14] MELIS G, KOČISKÝ T, BLUNSOM P.Mogrifier LSTM[EB/OL].[2021-10-05].https://arxiv.org/abs/1909.01792. [15] ZENG D, LIU K, LAI S, et al.Relation classification via convolutional deep neural network[C]//Proceedings of the 25th International Conference on Computational Linguistics:Technical Papers.Dublin, Ireland:COLING Press, 2014:2335-2344. [16] GENG Z Q, CHEN G F, HAN Y M, et al.Semantic relation extraction using sequential and tree-structured LSTM with attention[J].Information Sciences, 2020, 509:183-192. [17] 闫雄, 段跃兴, 张泽华.采用自注意力机制和CNN融合的实体关系抽取[J].计算机工程与科学, 2020, 42(11):2059-2066. YAN X, DUAN Y X, ZHANG Z H.Entity relationship extraction fusing self-attention mechanism and CNN[J].Computer Engineering & Science, 2020, 42(11):2059-2066.(in Chinese) [18] YUAN Y, ZHOU X F, PAN S R, et al.A relation-specific attention network for joint entity and relation extraction[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2020:4054-4060. [19] LIN Y K, SHEN S Q, LIU Z Y, et al.Neural relation extraction with selective attention over instances[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.[S.l.]:ACL, 2016:2124-2133. [20] ZHENG S C, WANG F, BAO H Y, et al.Joint extraction of entities and relations based on a novel tagging scheme[EB/OL].[2021-10-05].https://arxiv.org/abs/1706.05075. [21] ZENG X R, ZENG D J, HE S Z, et al.Extracting relational facts by an end-to-end neural model with copy mechanism[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.[S.l.]:ACL, 2018:506-514. [22] BEKOULIS G, DELEU J, DEMEESTER T, et al.Joint entity recognition and relation extraction as a multi-head selection problem[J].Expert Systems with Applications, 2018, 114:34-45. [23] ZENG D J, ZHANG H R, LIU Q Y.CopyMTL:copy mechanism for joint extraction of entities and relations with multi-task learning[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(5):9507-9514. [24] ZENG X R, HE S Z, ZENG D J, et al.Learning the extraction order of multiple relational facts in a sentence with reinforcement learning[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.[S.l.]:ACL, 2019:367-377. [25] TAKANOBU R, ZHANG T Y, LIU J X, et al.A hierarchical framework for relation extraction with reinforcement learning[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33:7072-7079. [26] YU B, ZHANG Z, SHU X, et al.Joint extraction of entities and relations based on a novel decomposition strategy[C]//Proceedings of the 24th European Conference on Artificial Intelligence.Berlin, Germany:Springer, 2020:2282-2289. |