1 |
CHOY C B, XU D, GWAK J, et al. 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction[EB/OL]. [2022-05-05]. https://arxiv.org/abs/1604.00449.
|
2 |
GROUEIX T, FISHER M, KIM V G, et al. AtlasNet: a Papier-Mâché approach to learning 3D surface generation[EB/OL]. [2022-05-05]. https://arxiv.org/abs/1802.05384.
|
3 |
HAUGO S, STAHL A, BREKKE E. Continuous signed distance functions for 3D vision[C]//Proceedings of International Conference on 3D Vision. Washington D. C., USA: IEEE Press, 2018: 116-125.
|
4 |
CHEN Z Q, ZHANG H. Learning implicit fields for generative shape modeling[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 5932-5941.
|
5 |
PARK J J, FLORENCE P, STRAUB J, et al. DeepSDF: learning continuous signed distance functions for shape representation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 165-174.
|
6 |
MESCHEDER L, OECHSLE M, NIEMEYER M, et al. Occupancy networks: learning 3D reconstruction in function space[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 4455-4465.
|
7 |
KAZHDAN M, HOPPE H. Screened Poisson surface reconstruction. ACM Transactions on Graphics, 2013, 32 (3): 1- 13.
doi: 10.1145/2487228.2487237
|
8 |
庞正雅, 周志峰, 王立端, 等. 改进的点云数据三维重建算法. 激光与光电子学进展, 2020, 57 (2): 191- 197.
URL
|
|
PANG Z Y, ZHOU Z F, WANG L D, et al. Improved three-dimensional reconstruction algorithm for point cloud data. Laser & Optoelectronics Progress, 2020, 57 (2): 191- 197.
URL
|
9 |
王连哲, 韩俊刚, 卢升, 等. 点云隐式曲面快速重建算法研究. 激光与光电子学进展, 2021, 58 (4): 331- 340.
URL
|
|
WANG L Z, HAN J G, LU S, et al. Fast reconstruction algorithm of point cloud implicit surface. Laser & Optoelectronics Progress, 2021, 58 (4): 331- 340.
URL
|
10 |
CHABRA R, LENSSEN J E, ILG E, et al. Deep local shapes: learning local SDF priors for detailed 3D reconstruction[C]//Proceedings of the 16th European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 608-625.
|
11 |
TRETSCHK E, TEWARI A, GOLYANIK V, et al. PatchNets: patch-based generalizable deep implicit 3D shape representations[C]//Proceedings of the 16th European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 293-309.
|
12 |
JIANG C Y, SUD A, MAKADIA A, et al. Local implicit grid representations for 3D scenes[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 6000-6009.
|
13 |
|
14 |
SITZMANN V, MARTEL J N P, BERGMAN A W, et al. Implicit neural representations with periodic activation functions[EB/OL]. [2022-05-05]. https://arxiv.org/abs/2006.09661.
|
15 |
ERLER P, GUERRERO P, OHRHALLINGER S, et al. Points2Surf: learning implicit surfaces from point cloud patches[EB/OL]. [2022-05-05]. https://arxiv.org/abs/2007.10453.
|
16 |
|
17 |
|
18 |
LORENSEN W E, CLINE H E. Marching Cubes: a high resolution 3D surface construction algorithm. ACM Siggraph Computer Graphics, 1987, 21 (4): 163- 169.
doi: 10.1145/37402.37422
|
19 |
高庆吉, 李天昊, 邢志伟, 等. 基于区块特征融合的点云语义分割方法. 计算机工程, 2022, 48 (9): 37-44, 54
URL
|
|
GAO Q J, LI T H, XING Z W, et al. Point cloud semantic segmentation method based on block feature fusion. Computer Engineering, 2022, 48 (9): 37-44, 54
URL
|
20 |
BASRI R, GALUN M, GEIFMAN A, et al. Frequency bias in neural networks for input of non-uniform density[C]//Proceedings of the 37th International Conference on Machine Learning. New York, USA: ACM Press, 2020: 685-694.
|
21 |
孙萍, 刘源昊, 王旭辉. 基于B样条的函数型数据表示与配准. 大学数学, 2021, 37 (3): 1- 8.
URL
|
|
SUN P, LIU Y H, WANG X H. Functional data representation and registration based on B-spline. College Mathematics, 2021, 37 (3): 1- 8.
URL
|
22 |
康瑞雪, 牛保宁, 李显, 等. 融合多源数据输入具有自注意力机制的LSTM股票价格预测. 小型微型计算机系统, 2023, 44 (2): 326- 333.
URL
|
|
KANG R X, NIU B N, LI X, et al. Predicting stock prices using LSTM with the self-attention mechanism and multi-source data. Journal of Chinese Computer Systems, 2023, 44 (2): 326- 333.
URL
|
23 |
|
24 |
KOCH S, MATVEEV A, JIANG Z S, et al. ABC: a big CAD model dataset for geometric deep learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 9593-9603.
|
25 |
SUN X Y, WU J J, ZHANG X M, et al. Pix3D: dataset and methods for single-image 3D shape modeling[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 2974-2983.
|
26 |
TATARCHENKO M, RICHTER S R, RANFTL R, et al. What do single-view 3D reconstruction networks learn? [C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 3400-3409.
|