1 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6): 84- 90.
doi: 10.1145/3065386
|
2 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2016: 770-778.
|
3 |
陈良臣, 傅德印. 面向小样本数据的机器学习方法研究综述. 计算机工程, 2022, 48(11): 1- 13.
doi: 10.19678/j.issn.1000-3428.0065347
|
|
CHEN L C , FU D Y . Survey on machine learning methods for small sample data. Computer Engineering, 2022, 48 (11): 1- 13.
doi: 10.19678/j.issn.1000-3428.0065347
|
4 |
LI X Z, SUN Q R, LIU Y Y, et al. Learning to self-train for semi-supervised few-shot classification[C]//Proceedings of Conference on Advances in Neural Information Processing Systems. [S. l. ]: AAAI Press, 2019: 10276-10286.
|
5 |
AFRASIYABI A, LALONDE J F, GAGNÉ C. Associative alignment for few-shot image classification[C]//Proceedings of the 16th European Conference. Berlin, Germany: Springer, 2020: 18-35.
|
6 |
LI J, WANG Z, HU X. Learning intact features by erasing-inpainting for few-shot classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. [S. l. ]: AAAI Press, 2021: 8401-8409.
|
7 |
XU J Y, LE H. Generating representative samples for few-shot classification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2022: 9003-9013.
|
8 |
|
9 |
LI K, ZHANG Y L, LI K P, et al. Adversarial feature hallucination networks for few-shot learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 13470-13479.
|
10 |
GAO H, SHOU Z, ZAREIAN A, et al. Low-shot learning via covariance-preserving adversarial augmentation networks[EB/OL]. [2024-03-12]. https://arxiv.org/pdf/1810.11730.
|
11 |
HARIHARAN B, GIRSHICK R. Low-shot visual recognition by shrinking and hallucinating features[C]//Proceedings of IEEE International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2017: 3037-3046.
|
12 |
SCHWARTZ E, KARLINSKY L, SHTOK J, et al. Delta-Encoder: an effective sample synthesis method for few-shot object recognition[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2018: 2850-2860.
|
13 |
XU J Y, LE H, HUANG M Z, et al. Variational feature disentangling for fine-grained few-shot classification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2021: 8812-8821.
|
14 |
VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]//Proceedings of the 30th International Conference on Neural Information Processing System. New York, USA: ACM Press, 2016: 3637-3645.
|
15 |
|
16 |
|
17 |
HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 9729-9738.
|
18 |
|
19 |
LIN X D, DUAN Y Q, DONG Q Y, et al. Deep variational metric learning[C]//Proceedings of the 15th European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 714-729.
|
20 |
YIN X, YU X, SOHN K, et al. Feature transfer learning for deep face recognition with under-represented data[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2019: 233-241.
|
21 |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2009: 248-255.
|
22 |
RAVI S, LAROCHELLE H. Optimization as a model for few-shot learning[C]//Proceedigns of the 4th International Conference on Learning Representations. [S. l. ]: AAAI Press, 2016: 120-126.
|
23 |
CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[EB/OL]. [2024-03-12]. https://arxiv.org/pdf/2002.05709.
|
24 |
SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 4080-4090.
|
25 |
SUNG F, YANG Y, ZHANG L, et al. Learning to compare: relation network for few-shot learning[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2018: 1199-1208.
|
26 |
FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of the 34th International Conference on Machine Learning. New York, USA: ACM Press, 2017: 1126-1135.
|
27 |
ZHANG M, HUANG S, WANG D. Domain generalized few-shot image classification via meta regularization network[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2022: 3748-3752.
|
28 |
|
29 |
ORESHKIN B N, RODRIGUEZ P, LACOSTE A. TADAM: task dependent adaptive metric for improved few-shot learning[C]//Proceedings of Advances in Neural Information Processing Systems. [S. l. ]: AAAI Press, 2018: 719-729.
|
30 |
JIA J F, FENG X, YU H Q. Few-shot classification via efficient meta-learning with hybrid optimization. Engineering Applications of Artificial Intelligence, 2024, 127, 107296.
doi: 10.1016/j.engappai.2023.107296
|
31 |
CHEN J, HU Y, SHEN M, et al. Dual Episodic sampling and momentum consistency regularization for unsupervised few-shot learning[C]//Proceedings of IEEE International Conference on Multimedia and Expo (ICME). Washington D. C., USA: IEEE Press, 2023: 2891-2896.
|
32 |
ZHANG L, ZHOU F, WEI W, et al. Meta-hallucinating prototype for few-shot learning promotion. Pattern Recognition: The Journal of the Pattern Recognition Society, 2023, 136, 109235.
doi: 10.1016/j.patcog.2022.109235
|
33 |
LEE K, MAJI S, RAVICHANDRAN A, et al. Meta-learning with differentiable convex optimization[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2019: 10657-10665.
|
34 |
SUN Q, LIU Y, CHUA T S, et al. Meta-transfer learning for few-shot learning[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2019: 403-412.
|