| 1 |
张欢, 仇大伟, 冯毅博, 等. U-Net模型改进及其在医学图像分割上的研究综述. 激光与光电子学进展, 2022, 59 (2): 1- 17.
|
|
ZHANG H , QIU D W , FENG Y B , et al. Improved U-Net models and its applications in medical image segmentation: a review. Laser & Optoelectronics Progress, 2022, 59 (2): 1- 17.
|
| 2 |
梁礼明, 余洁, 周珑颂, 等. 多尺度密集注意力网络用于视网膜血管分割. 激光与光电子学进展, 2023, 60 (6): 122- 131.
|
|
LIANG L M , YU J , ZHOU L S , et al. Multiscale dense attention network for retinal vessel segmentation. Laser & Optoelectronics Progress, 2023, 60 (6): 122- 131.
|
| 3 |
WANG C L , ODA M , HAYASHI Y , et al. Tensor-cut: a tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation. Medical Image Analysis, 2020, 60, 101623.
doi: 10.1016/j.media.2019.101623
|
| 4 |
KALAIE S , GOOYA A . Vascular tree tracking and bifurcation points detection in retinal images using a hierarchical probabilistic model. Computer Methods and Programs in Biomedicine, 2017, 151, 139- 149.
doi: 10.1016/j.cmpb.2017.08.018
|
| 5 |
JIA D Q , ZHUANG X H . Learning-based algorithms for vessel tracking: a review. Computerized Medical Imaging and Graphics, 2021, 89, 101840.
doi: 10.1016/j.compmedimag.2020.101840
|
| 6 |
SUN J D , PENG Y J , GUO Y F , et al. Segmentation of the multimodal brain tumor image used the multi-pathway architecture method based on 3D FCN. Neurocomputing, 2021, 423, 34- 45.
doi: 10.1016/j.neucom.2020.10.031
|
| 7 |
|
| 8 |
胡帅, 李华玲, 郝德琛. 改进U-Net的多级边缘增强医学图像分割网络. 计算机工程, 2024, 50 (4): 286- 293.
doi: 10.19678/j.issn.1000-3428.0067779
|
|
HU S , LI H L , HAO D C . Improved multistage edge-enhanced medical image segmentation network of U-Net. Computer Engineering, 2024, 50 (4): 286- 293.
doi: 10.19678/j.issn.1000-3428.0067779
|
| 9 |
徐晓峰, 黄韫栀, 徐军. 基于各向异性注意力的双分支血管分割模型. 计算机工程, 2024, 50 (1): 348- 356.
doi: 10.19678/j.issn.1000-3428.0067078
|
|
XU X F , HUANG Y Z , XU J . Dual-branch vascular segmentation model based on anisotropic attention. Computer Engineering, 2024, 50 (1): 348- 356.
doi: 10.19678/j.issn.1000-3428.0067078
|
| 10 |
LISKOWSKI P , KRAWIEC K . Segmenting retinal blood vessels with deep neural networks. IEEE Transactions on Medical Imaging, 2016, 35 (11): 2369- 2380.
doi: 10.1109/TMI.2016.2546227
|
| 11 |
LI L Z, VERMA M, NAKASHIMA Y, et al. IterNet: retinal image segmentation utilizing structural redundancy in vessel networks[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV). Washington D.C., USA: IEEE Press, 2020: 3645-3654.
|
| 12 |
|
| 13 |
LAN Y C , ZHANG X M . Real-time ultrasound image despeckling using mixed-attention mechanism based residual UNet. IEEE Access, 2020, 8, 195327- 195340.
doi: 10.1109/ACCESS.2020.3034230
|
| 14 |
GU R , WANG G T , SONG T , et al. CA-Net: comprehensive attention convolutional neural networks for explainable medical image segmentation. IEEE Transactions on Medical Imaging, 2021, 40 (2): 699- 711.
doi: 10.1109/TMI.2020.3035253
|
| 15 |
WANG Z K , ZOU Y N , LIU P X . Hybrid dilation and attention residual U-Net for medical image segmentation. Computers in Biology and Medicine, 2021, 134, 104449.
doi: 10.1016/j.compbiomed.2021.104449
|
| 16 |
|
| 17 |
|
| 18 |
SAMUEL P M , VEERAMALAI T . VSSC-Net: vessel specific skip chain convolutional network for blood vessel segmentation. Computer Methods and Programs in Biomedicine, 2021, 198, 105769.
doi: 10.1016/j.cmpb.2020.105769
|
| 19 |
GUO S . CSGNet: cascade semantic guided net for retinal vessel segmentation. Biomedical Signal Processing and Control, 2022, 78, 103930.
doi: 10.1016/j.bspc.2022.103930
|
| 20 |
|
| 21 |
|
| 22 |
|
| 23 |
|
| 24 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 7132-7141.
|
| 25 |
|
| 26 |
LI X, YANG Y B, ZHAO Q J, et al. Spatial pyramid based graph reasoning for semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 8947-8956.
|
| 27 |
宋杰, 肖亮, 练智超, 等. 基于深度学习的数字病理图像分割综述与展望. 软件学报, 2021, 32 (5): 1427- 1460.
|
|
SONG J , XIAO L , LIAN Z C , et al. Overview and prospect of deep learning for image segmentation in digital pathology. Journal of Software, 2021, 32 (5): 1427- 1460.
|
| 28 |
ZHOU Z W , SIDDIQUEE M M R , TAJBAKHSH N , et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Transactions on Medical Imaging, 2020, 39 (6): 1856- 1867.
doi: 10.1109/TMI.2019.2959609
|
| 29 |
|
| 30 |
|
| 31 |
MARDANI K , MAGHOOLI K . Enhancing retinal blood vessel segmentation in medical images using combined segmentation modes extracted by DBSCAN and morphological reconstruction. Biomedical Signal Processing and Control, 2021, 69, 102837.
doi: 10.1016/j.bspc.2021.102837
|
| 32 |
YUAN Y C , ZHANG L , WANG L T , et al. Multi-level attention network for retinal vessel segmentation. IEEE Journal of Biomedical and Health Informatics, 2022, 26 (1): 312- 323.
doi: 10.1109/JBHI.2021.3089201
|
| 33 |
YOU Z Y , YU H P , XIAO Z H , et al. CAS-UNet: a retinal segmentation method based on attention. Electronics, 2023, 12 (15): 3359.
doi: 10.3390/electronics12153359
|
| 34 |
孙颖, 丁卫平, 黄嘉爽, 等. RCARUNet: 基于粗糙通道注意力机制的视网膜血管分割网络. 计算机研究与发展, 2023, 60 (4): 947- 961.
|
|
SUN Y , DING W P , HUANG J S , et al. RCARUNet: retinal vessels segmentation network based on rough channel attention mechanism. Journal of Computer Research and Development, 2023, 60 (4): 947- 961.
|
| 35 |
LIU Y H , SHEN J , YANG L , et al. ResDOUNet: a deep residual network for accurate retinal vessel segmentation from fundus images. Biomedical Signal Processing and Control, 2023, 79, 104087.
doi: 10.1016/j.bspc.2022.104087
|
| 36 |
吕佳, 王泽宇, 梁浩城. 边界注意力辅助的动态图卷积视网膜血管分割. 光电工程, 2023, 50 (1): 33- 45.
|
|
LV J , WANG Z Y , LIANG H C . Boundary attention assisted dynamic graph convolution for retinal vascular segmentation. Opto-Electronic Engineering, 2023, 50 (1): 33- 45.
|
| 37 |
LI X J , DING J Q , TANG J J , et al. Res2UNet: a multi-scale channel attention network for retinal vessel segmentation. Neural Computing and Applications, 2022, 34 (14): 12001- 12015.
doi: 10.1007/s00521-022-07086-8
|
| 38 |
PALANIVEL D A , NATARAJAN S , GOPALAKRISHNAN S . Retinal vessel segmentation using multifractal characterization. Applied Soft Computing, 2020, 94, 106439.
doi: 10.1016/j.asoc.2020.106439
|
| 39 |
WU H S , WANG W , ZHONG J F , et al. SCS-net: a scale and context sensitive network for retinal vessel segmentation. Medical Image Analysis, 2021, 70, 102025.
doi: 10.1016/j.media.2021.102025
|
| 40 |
ZHOU Y Q, YU H C, SHI H. Study group learning: improving retinal vessel segmentation trained with noisy labels[EB/OL]. [2023-10-05]. https://arxiv.org/abs/2103.03451.
|
| 41 |
SHI T Y , BOUTRY N , XU Y C , et al. Local intensity order transformation for robust curvilinear object segmentation. IEEE Transactions on Image Processing, 2022, 31, 2557- 2569.
doi: 10.1109/TIP.2022.3155954
|
| 42 |
|
| 43 |
LIU W T , YANG H H , TIAN T , et al. Full-resolution network and dual-threshold iteration for retinal vessel and coronary angiograph segmentation. IEEE Journal of Biomedical and Health Informatics, 2022, 26 (9): 4623- 4634.
doi: 10.1109/JBHI.2022.3188710
|
| 44 |
LI Y , ZHANG Y , LIU J Y , et al. Global transformer and dual local attention network via deep-shallow hierarchical feature fusion for retinal vessel segmentation. IEEE Transactions on Cybernetics, 2023, 53 (9): 5826- 5839.
doi: 10.1109/TCYB.2022.3194099
|
| 45 |
SHI Z D , LI Y , ZOU H , et al. TCU-Net: transformer embedded in convolutional U-shaped network for retinal vessel segmentation. Sensors, 2023, 23 (10): 4897.
doi: 10.3390/s23104897
|
| 46 |
JIANG M S , ZHU Y F , ZHANG X D . CoVi-Net: a hybrid convolutional and vision transformer neural network for retinal vessel segmentation. Computers in Biology and Medicine, 2024, 170, 108047.
doi: 10.1016/j.compbiomed.2024.108047
|