作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (12): 180-188. doi: 10.19678/j.issn.1000-3428.0069650

• 先进计算与数据处理 • 上一篇    下一篇

基于标签传播与沙丘猫群优化的属性图划分算法

崔焕庆1,2,3,*(), 吴一凡1, 董柯桢1, 周升庆1   

  1. 1. 山东科技大学计算机科学与工程学院,山东 青岛 266590
    2. 高效能服务器和存储技术国家重点实验室,山东 济南 250014
    3. 齐鲁工业大学(山东省科学院)山东省人工智能研究院,山东 济南 250014
  • 收稿日期:2024-03-25 修回日期:2024-07-23 出版日期:2025-12-15 发布日期:2024-09-05
  • 通讯作者: 崔焕庆
  • 基金资助:
    山东省自然科学基金联合基金(ZR2022MF274); 山东省自然科学基金联合基金(ZR2023LZH009); 教育部人文社会科学研究规划基金(23YJAZH192)

Property Graph Partition Algorithm Based on Label Propagation and Sand Cat Swarm Optimization

CUI Huanqing1,2,3,*(), WU Yifan1, DONG Kezhen1, ZHOU Shengqing1   

  1. 1. College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
    2. State Key Laboratory of High-End Server and Storage Technology, Jinan 250014, Shandong, China
    3. Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, China
  • Received:2024-03-25 Revised:2024-07-23 Online:2025-12-15 Published:2024-09-05
  • Contact: CUI Huanqing

摘要:

图在社交网络、通信网络等领域有着广泛应用,而且随着图规模日益增长,分布式图处理系统成为处理、分析大规模图数据的主要手段。图划分算法是此类系统的基础。目前提出的图划分算法通常假定顶点和边无属性,在对属性图进行划分时,易出现负载不均衡的问题。为此,将负载均衡分为图规模均衡和存储容量均衡,将属性图划分问题建模为一个带约束的单目标优化问题,进而提出一种基于标签传播和沙丘猫群优化(SCSO)的属性图划分算法LSPGP。该算法首先利用标签传播算法(LPA)将图进行均匀划分,使划分结果达到图规模和存储容量上的负载均衡;然后改进SCSO算法,使其能够求解组合优化问题,并基于改进的SCSO算法求解最优顶点迁移策略,以优化分区质量,在负载均衡的基础上达到最小化割边率的目标。实验结果显示,相较于基线算法,所提算法在存储容量负载均衡率(VLF)上最多降低了33百分点,同时在割边率和图规模负载均衡率(SLF)方面与基线算法的差距均保持在9百分点以内。此外,该算法在真实属性图结构上也展现出了良好的可扩展性。

关键词: 图划分, 属性图, 负载均衡, 标签传播, 沙丘猫群优化算法

Abstract:

The graphs are widely applied in social networks and communication networks, and the distributed graph processing systems have been used more frequently in processing and analyzing large-scale graphs with the increase of the scale of the graphs. The graph partitioning is the basis of these systems. The existing graph partitioning algorithms usually lead to load unbalance for property graphs, because they assume that the edges and vertices have no attributes. Therefore, this paper considers two kinds of load balance factors: the graph-size load and the storage load balance, and it formulates the property graph partitioning problem as a constrained single-objective optimization problem. In further, it proposes a large-scale property graph partition algorithm based on label propagation and Sand Cat Swarm Optimization (SCSO), named LSPGP. The proposed algorithm partitions the graph by Label Propagation Algorithm (LPA) to achieve graph-size and storage balance in first. Secondly, the SCSO algorithm is improved to enable it to solve combinatorial optimization problems, and it is applied to guide the vertices migration to optimize the partition result. The experimental results show that, compared with the baseline algorithm, the proposed algorithm achieves a maximum reduction of 33 percentage points in Volume Load Balancing Factor (VLF), while maintaining a gap of less than 9 percentage points with the baseline algorithm in both Scale Load Balancing Factor (SLF) and graph size load balance ratio. Furthermore, the algorithm also demonstrates good scalability on real-world property graph structures.

Key words: graph partitioning, property graph, load balance, label propagation, Sand Cat Swarm Optimization (SCSO) algorithm