| 1 |
RONG X Y, CUI H Q. Large-scale dynamic graph updating algorithm in distributed computing system[C]//Proceedings of the 2nd International Conference on Big Data Technologies. New York, USA: ACM Press, 2019: 248-251.
|
| 2 |
FAN W F , HE T , LAI L B , et al. GraphScope. Proceedings of the VLDB Endowment, 2021, 14 (12): 2879- 2892.
doi: 10.14778/3476311.3476369
|
| 3 |
DAI G H , HUANG T H , CHI Y Z , et al. GraphH: a processing-in-memory architecture for large-scale graph processing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38 (4): 640- 653.
doi: 10.1109/TCAD.2018.2821565
|
| 4 |
GONZALEZ J E, LOW Y, GU H, et al. PowerGraph: distributed graph-parallel computation on natural graphs[C]//Proceedings of the 10th USENIX Symposium on Operating Systems Design and Implementation. [S. l. ]: USENIX Association, 2012: 17-30.
|
| 5 |
GONZALEZ J E, XIN R S, DAVE A, et al. GraphX: graph processing in a distributed dataflow framework[C]//Proceedings of the 11th USENIX Symposium on Operating Systems Design and Implementation. [S. l. ]: USENIX Association, 2014: 599-613.
|
| 6 |
GONG S F, ZHANG Y F, YU G. HBP: hotness balanced partition for prioritized iterative graph computations[C]//Proceedings of the IEEE 36th International Conference on Data Engineering (ICDE). Dallas, USA: IEEE Press, 2020: 1942-1945.
|
| 7 |
AKHREMTSEV Y , SANDERS P , SCHULZ C . High-quality shared-memory graph partitioning. IEEE Transactions on Parallel and Distributed Systems, 2020, 31 (11): 2710- 2722.
|
| 8 |
WANG L, XIAO Y H, SHAO B, et al. How to partition a billion-node graph[C]//Proceedings of the IEEE 30th International Conference on Data Engineering. Chicago, USA: IEEE Press, 2014: 568-579.
|
| 9 |
柳菁, 李琪. DisHAP: 基于层次亲和聚类的分布式大图划分算法. 电子学报, 2021, 49 (10): 2002- 2011.
|
|
LIU J , LI Q . DisHAP: a distributed partition algorithm for large scale graphs based on hierarchical affinity clustering. Acta Electronica Sinica, 2021, 49 (10): 2002- 2011.
|
| 10 |
崔焕庆, 杨君三. 异构集群下基于标签传播的大规模图划分算法. 计算机工程与设计, 2023, 44 (5): 1400- 1404.
|
|
CUI H Q , YANG J S . Label propagation based large-scale graph partitioning algorithm for heterogeneous clusters. Computer Engineering and Design, 2023, 44 (5): 1400- 1404.
|
| 11 |
LI M H , CUI H Q , ZHOU C N , et al. GAP: genetic algorithm based large-scale graph partition in heterogeneous cluster. IEEE Access, 2020, 8, 144197- 144204.
doi: 10.1109/ACCESS.2020.3014351
|
| 12 |
ZHANG W, CHEN Y, DAI D. AKIN: a streaming graph partitioning algorithm for distributed graph storage systems[C]//Proceedings of the 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). Washington D. C., USA: IEEE Press, 2018: 183-192.
|
| 13 |
SUN Z P , ZENG G S , DING C L , et al. A streaming graph partitioning method to achieve high cohesion and equilibrium via multiplayer repeated game. IEEE Transactions on Computational Social Systems, 2024, 11 (1): 803- 814.
doi: 10.1109/TCSS.2022.3226230
|
| 14 |
ZENG Y Y , LI Y F , ZHOU X , et al. Efficient game theoretic approach to dynamic graph partitioning. Information Sciences, 2022, 606, 892- 909.
doi: 10.1016/j.ins.2022.05.096
|
| 15 |
张明, 郭文康, 王海峰. 面向大规模动态图的异构图计算系统设计. 计算机工程, 2025, 51 (3): 197- 207.
doi: 10.19678/j.issn.1000-3428.0068477
|
|
ZHANG M , GUO W K , WANG H F . A heterogeneous graph computing system for large-scale dynamic graph. Computer Engineering, 2025, 51 (3): 197- 207.
doi: 10.19678/j.issn.1000-3428.0068477
|
| 16 |
AZADE N, WILL H, ANNA G, et al. A deep learning framework for graph partitioning[C]//Proceedings of the 7th International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2019: 1-10.
|
| 17 |
GATTI A, HU Z, SMIDT T, et al. Deep learning and spectral embedding for graph partitioning[C]//Proceedings of SIAM Conference on Parallel Processing for Scientific Computing. [S. l. ]: Society for Industrial and Applied Mathematics, 2022: 25-36.
|
| 18 |
YANG Z X , SHI R Y , QUAN P , et al. Semi-supervised graph neural networks for graph partitioning problem. Procedia Computer Science, 2023, 221, 789- 796.
doi: 10.1016/j.procs.2023.08.052
|
| 19 |
AYALL T A , LIU H W , ZHOU C J , et al. Graph computing systems and partitioning techniques: a survey. IEEE Access, 2022, 10, 118523- 118550.
doi: 10.1109/ACCESS.2022.3219422
|
| 20 |
PETRONI F, QUERZONI L, DAUDJEE K, et al. HDRF: stream-based partitioning for power-law graphs[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. New York, USA: ACM Press, 2015: 243-252.
|
| 21 |
LI H , YUAN H , HUANG J B , et al. Group reassignment for dynamic edge partitioning. IEEE Transactions on Parallel and Distributed Systems, 2021, 32 (10): 2477- 2490.
doi: 10.1109/TPDS.2021.3069292
|
| 22 |
LI Y B, LI C Y, ORGERIE A C, et al. WSGP: a window-based streaming graph partitioning approach[C]//Proceedings of the IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid). Melbourne, Australia: IEEE Press, 2021: 586-595.
|
| 23 |
张正康, 杨丹, 聂铁铮, 等. 基于图结构聚类的自监督学习疾病诊断方法. 计算机工程, 2024, 50 (7): 360- 371.
doi: 10.19678/j.issn.1000-3428.0068187
|
|
ZHANG Z K , YANG D , NIE T Z , et al. Self-supervised learning based on graph structural clustering for disease diagnosis method. Computer Engineering, 2024, 50 (7): 360- 371.
doi: 10.19678/j.issn.1000-3428.0068187
|
| 24 |
HOGAN A , BLOMQVIST E , COCHEZ M , et al. Knowledge graphs. ACM Computing Surveys, 2022, 54 (4): 1- 37.
|
| 25 |
HE C B , LIU S Y , ZHANG L , et al. A fuzzy clustering based method for attributed graph partitioning. Journal of Ambient Intelligence and Humanized Computing, 2019, 10 (9): 3399- 3407.
doi: 10.1007/s12652-018-1054-2
|
| 26 |
SAKOUHI C , KHALDI A , BEN G H . Hammer lightweight graph partitioner based on graph data volumes. Journal of Parallel and Distributed Computing, 2021, 158, 16- 28.
doi: 10.1016/j.jpdc.2021.07.008
|
| 27 |
SEYYEDABBASI A , KIANI F . Sand cat swarm optimization: a nature-inspired algorithm to solve global optimization problems. Engineering with Computers, 2023, 39 (4): 2627- 2651.
doi: 10.1007/s00366-022-01604-x
|
| 28 |
|
| 29 |
HE C, FEI X, LI H, et al. A multi-view clustering method for community discovery integrating links and tags[C]//Proceedings of the IEEE 14th International Conference on e-Business Engineering. Shanghai, China: IEEE Press, 2017: 23-30.
|