| 1 |
SILVA I , MOODY G , SCOTT D J , et al. Predicting in-hospital mortality of ICU patients: the PhysioNet/computing in cardiology challenge 2012. Computing in Cardiology, 2012, 39, 245- 248.
|
| 2 |
YI X, ZHENG Y, ZHANG J, et al. ST-MVL: filling missing values in geo-sensory time series data[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2016: 2704-2710.
|
| 3 |
DU W J , COTE D , BARBER C , et al. Forecasting loss of signal in optical networks with machine learning. Journal of Optical Communications and Networking, 2021, 13 (10): 109- 121.
doi: 10.1364/JOCN.423667
|
| 4 |
BRUNI R , DARAIO C , AURELI D . Imputation techniques for the reconstruction of missing interconnected data from higher Educational Institutions. Knowledge-Based Systems, 2021, 212, 106512.
doi: 10.1016/j.knosys.2020.106512
|
| 5 |
于明霞. 基于深度学习的交通数据插补与预测方法研究[D]. 长沙: 湖南大学, 2022.
|
|
YU M X. Research on traffic data interpolation and prediction method based on deep learning[D]. Changsha: Hunan University, 2022. (in Chinese)
|
| 6 |
杨正泽. 轨道动检数据异常检测及缺失数据插补算法研究[D]. 北京: 北京交通大学, 2023.
|
|
YANG Z Z. Research on anomaly detection and missing data interpolation algorithm of track dynamic inspection data[D]. Beijing: Beijing Jiaotong University, 2023. (in Chinese)
|
| 7 |
SHAO Z Z, ZHANG Z, WANG F, et al. Pre-training enhanced spatial-temporal graph neural network for multivariate time series forecasting[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2022: 1567-1577.
|
| 8 |
|
| 9 |
|
| 10 |
雷未, 王建, 吉同元, 等. 基于深度学习框架的长序列大坝监测缺失数据插补模型. 水利水电科技进展, 2023, 43 (6): 82- 88.
|
|
LEI W , WANG J , JI T Y , et al. Long-series missing data interpolation model for dam monitoring based on deep learning framework. Advances in Science and Technology of Water Resources, 2023, 43 (6): 82- 88.
|
| 11 |
HE Y D , ZHAO J B . Temporal convolutional networks for anomaly detection in time series. Journal of Physics: Conference Series, 2019, 1213 (4): e042050.
|
| 12 |
WU H X, XU J H, WANG J M, et al. Autoformer: decomposition Transformers with auto-correlation for long-term series forecasting[EB/OL]. [2024-03-05]. https://arxiv.org/abs/2106.13008v5.
|
| 13 |
|
| 14 |
ANDERSON O D , KENDALL M . Time-series. The Statistician, 1976, 25 (4): 308.
|
| 15 |
ZHANG A Q , SONG S X , WANG J M , et al. Time series data cleaning. Proceedings of the VLDB Endowment, 2017, 10 (10): 1046- 1057.
doi: 10.14778/3115404.3115410
|
| 16 |
YOON J, JORDON J, SCHAAR M. GAIN: missing data imputation using generative adversarial nets[C]//Proceedings of International Conference on Machine Learning. [S. l. ]: PMLR, 2020: 5689-5698.
|
| 17 |
FENG H H , CHEN G S , YIN C , et al. A SVM regression based approach to filling in missing values. Berlin, Germany: Springer, 2005.
|
| 18 |
PANTANOWITZ A , MARWALA T . Missing data imputation through the use of the random forest algorithm. Berlin, Germany: Springer, 2009.
|
| 19 |
CHE Z P , PURUSHOTHAM S , CHO K , et al. Recurrent neural networks for multivariate time series with missing values. Scientific Reports, 2018, 8 (1): 6085.
doi: 10.1038/s41598-018-24271-9
|
| 20 |
HOCHREITER S , SCHMIDHUBER J . Long short-term memory. Neural Computation, 1997, 9 (8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735
|
| 21 |
郑欣彤, 边婷婷, 张德强, 等. 基于深度学习的温度观测数据长时间缺失值插补方法. 计算机系统应用, 2022, 31 (4): 221- 228.
|
|
ZHENG X T , BIAN T T , ZHANG D Q , et al. Interpolation of long time missing values of temperature based on deep learning. Computer Systems and Applications, 2022, 31 (4): 221- 228.
|
| 22 |
ZHOU T, MA Z Q, WEN Q S, et al. FEDformer: frequency enhanced decomposed Transformer for long-term series forecasting[EB/OL]. [2024-03-05]. https://arxiv.org/abs/2201.12740v3.
|
| 23 |
ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: beyond efficient Transformer for long sequence time-series forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2021: 11106-11115.
|
| 24 |
|
| 25 |
LI S Y, JIN X Y, XUAN Y, et al. Enhancing the locality and breaking the memory bottleneck of Transformer on time series forecasting[EB/OL]. [2024-03-05]. https://arxiv.org/abs/1907.00235v3.
|
| 26 |
|
| 27 |
LIU Y , WU H X , WANG J M , et al. Non-stationary Transformers: exploring the stationarity in time series forecasting. Advances in Neural Information Processing Systems, 2022, 35, 9881- 9893.
|
| 28 |
|