| 1 |
WU S C, HE Y F. Enriching pre-trained language model with entity information for relation classification[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2019: 1-9.
|
| 2 |
HUANG Y , LI Z X , DENG W , et al. D-BERT: Incorporating dependency-based attention into BERT for relation extraction. CAAI Transactions on Intelligence Technology, 2021, 6 (4): 417- 425.
doi: 10.1049/cit2.12033
|
| 3 |
ZHONG Z X, CHEN D Q. A frustratingly easy approach for entity and relation extraction[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: ACL Press, 2021: 50-61.
|
| 4 |
宁尚明, 滕飞, 李天瑞. 基于多通道自注意力机制的电子病历实体关系抽取. 计算机学报, 2020, 43 (5): 916- 929.
|
|
NING S M , TENG F , LI T R . Multi-channel self-attention mechanism for relation extraction in clinical records. Chinese Journal of Computers, 2020, 43 (5): 916- 929.
|
| 5 |
DAI X, KARIMI S, HACHEY B, et al. An effective transition-based model for discontinuous NER[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: ACL Press, 2020: 5860-5870.
|
| 6 |
李政, 涂刚, 汪汉生. MKE: 基于背景知识与多头选择的嵌套命名实体识别. 中文信息学报, 2024, 38 (4): 86-98, 107.
|
|
LI Z , TU G , WANG H S . MKE: nested NER based on knowledge embedding and multi-head selection. Journal of Chinese Information Processing, 2024, 38 (4): 86-98, 107.
|
| 7 |
WEI Z P, SU J L, WANG Y, et al. A novel cascade binary tagging framework for relational triple extraction[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: ACL Press, 2020: 1476-1488.
|
| 8 |
|
| 9 |
YAN Z H, ZHANG C, FU J L, et al. A partition filter network for joint entity and relation extraction[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL Press, 2021: 185-197.
|
| 10 |
乔勇鹏, 于亚新, 刘树越, 等. 图卷积增强多路解码的实体关系联合抽取模型. 计算机研究与发展, 2023, 60 (1): 153- 166.
|
|
QIAO Y P , YU Y X , LIU S Y , et al. Graph convolution-enhanced multi-channel decoding joint entity and relation extraction model. Journal of Computer Research and Development, 2023, 60 (1): 153- 166.
|
| 11 |
廖涛, 孙皓洁, 张顺香. 基于跨度和特征融合的实体关系联合抽取模型. 计算机工程, 2023, 49 (6): 107- 114.
doi: 10.19678/j.issn.1000-3428.0065261
|
|
LIAO T , SUN H J , ZHANG S X . Entity-relation joint extraction model based on span and feature fusion. Computer Engineering, 2023, 49 (6): 107- 114.
doi: 10.19678/j.issn.1000-3428.0065261
|
| 12 |
WANG W R , JIANG X , TIAN S H , et al. Automated pipeline for superalloy data by text mining. NPJ Computational Materials, 2022, 8, 9.
doi: 10.1038/s41524-021-00687-2
|
| 13 |
SWAIN M C , COLE J M . ChemDataExtractor: a toolkit for automated extraction of chemical information from the scientific literature. Journal of Chemical Information and Modeling, 2016, 56 (10): 1894- 1904.
doi: 10.1021/acs.jcim.6b00207
|
| 14 |
KIM E , HUANG K , TOMALA A , et al. Machine-learned and codified synthesis parameters of oxide materials. Scientific Data, 2017, 4, 170127.
doi: 10.1038/sdata.2017.127
|
| 15 |
SHETTY P , RAMPRASAD R . Automated knowledge extraction from polymer literature using natural language processing. iScience, 2021, 24 (1): 101922.
doi: 10.1016/j.isci.2020.101922
|
| 16 |
GUPTA T , ZAKI M , ANOOP KRISHNAN N M , et al. MatSciBERT: a materials domain language model for text mining and information extraction. NPJ Computational Materials, 2022, 8, 102.
doi: 10.1038/s41524-022-00784-w
|
| 17 |
GILLIGAN L P J , COBELLI M , TAUFOUR V , et al. A rule-free workflow for the automated generation of databases from scientific literature. NPJ Computational Materials, 2023, 9, 222.
doi: 10.1038/s41524-023-01171-9
|
| 18 |
VENUGOPAL V , OLIVETTI E . MatKG: an autonomously generated knowledge graph in Material Science. Scientific Data, 2024, 11 (1): 217.
doi: 10.1038/s41597-024-03039-z
|
| 19 |
CHOI J , LEE B . Accelerating materials language processing with large language models. Communications Materials, 2024, 5, 13.
doi: 10.1038/s43246-024-00449-9
|
| 20 |
POLAK M P , MORGAN D . Extracting accurate materials data from research papers with conversational language models and prompt engineering. Nature Communications, 2024, 15 (1): 1569.
doi: 10.1038/s41467-024-45914-8
|
| 21 |
|
| 22 |
|
| 23 |
WESTON L , TSHITOYAN V , DAGDELEN J , et al. Named entity recognition and normalization applied to large-scale information extraction from the materials science literature. Journal of Chemical Information and Modeling, 2019, 59 (9): 3692- 3702.
doi: 10.1021/acs.jcim.9b00470
|
| 24 |
FRIEDRICH A, ADEL H, TOMAZIC F, et al. The SOFC-exp corpus and neural approaches to information extraction in the materials science domain[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: ACL Press, 2020: 1255-1268.
|
| 25 |
MYSORE S, JENSEN Z, KIM E, et al. The materials science procedural text corpus: annotating materials synthesis procedures with shallow semantic structures[C]//Proceedings of the 13th Linguistic Annotation Workshop. Stroudsburg, USA: ACL Press, 2019: 56-64.
|
| 26 |
EBERTS M, ULGES A. Span-based joint entity and relation extraction with Transformer pre-training[C]//Proceedings of the 28th International Conference on Computational Linguistics. Barcelona, Spain: International Committee on Computational Linguistics, 2020: 88-99.
|
| 27 |
LI J Y, FEI H, LIU J, et al. Unified named entity recognition as word-word relation classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2022: 10965-10973.
|