1 |
GALTON F . Finger prints. London, UK: Macmillan, 1892.
|
2 |
MALTONI D , MAIO D , JAIN A K , et al. Handbook of fingerprint recognition. London, UK: Springer, 2009.
|
3 |
罗亚平, 张绍雨. 刑事科学技术. 北京: 中国人民公安大学出版社, 2015.
|
|
LUO Y P , ZHANG S Y . Criminal science and technology. Beijing: People's Public Security University of China Press, 2015.
|
4 |
袁颖. 基于非特征点的指纹自动识别方法研究进展. 中国刑警学院学报, 2018, (6): 95- 99.
doi: 10.14060/j.issn.2095-7939.2018.06.015
|
|
YUAN Y . Research progress on automatic fingerprint recognition method based on non-minutiae. Journal of Criminal Investigation Police University of China, 2018, (6): 95- 99.
doi: 10.14060/j.issn.2095-7939.2018.06.015
|
5 |
SINGLA N , KAUR M , SOFAT S . Automated latent fingerprint identification system: a review. Forensic Science International, 2020, 309, 110187.
doi: 10.1016/j.forsciint.2020.110187
|
6 |
孙哲南, 赫然, 王亮, 等. 生物特征识别学科发展报告. 中国图象图形学报, 2021, 26 (6): 1254- 1329.
URL
|
|
SUN Z N , HE R , WANG L , et al. Overview of biometrics research. Journal of Image and Graphics, 2021, 26 (6): 1254- 1329.
URL
|
7 |
|
8 |
|
9 |
|
10 |
GARRIS M D , MCCABE R M . Fingerprint minutiae from latent and matching tenprint images. Gaithersburg, MD: National Institute of Standards and Technology, 2000.
|
11 |
MAIO D , MALTONI D , CAPPELLI R , et al. FVC2000: fingerprint verification competition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 (3): 402- 412.
doi: 10.1109/34.990140
|
12 |
MAIO D, MALTONI D, CAPPELLI R, et al. FVC2002: second fingerprint verification competition[C]//Proceedings of Object Recognition Supported by User Interaction for Service Robots. Washington D.C., USA: IEEE Press, 2002: 811-814.
|
13 |
|
14 |
CAPPELLI R , FERRARA M , FRANCO A , et al. Fingerprint verification competition 2006. Biometric Technology Today, 2007, 15 (7/8): 7- 9.
doi: 10.1016/S0969-4765(07)70140-6
|
15 |
SI X B , FENG J J , ZHOU J , et al. Detection and rectification of distorted fingerprints. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (3): 555- 568.
doi: 10.1109/TPAMI.2014.2345403
|
16 |
|
17 |
SANKARAN A , VATSA M , SINGH R . Multisensor optical and latent fingerprint database. IEEE Access, 2015, 3, 653- 665.
doi: 10.1109/ACCESS.2015.2428631
|
18 |
杨小冬, 宁新宝, 谭台哲. 基于纹线跟踪的指纹细节提取算法. 计算机应用, 2004, 24 (3): 75- 78.
doi: 10.3969/j.issn.1000-386X.2004.03.032
|
|
YANG X D , NING X B , TAN T Z . Fingerprint minutiae extraction by following its ridge. Journal of Computer Applications, 2004, 24 (3): 75- 78.
doi: 10.3969/j.issn.1000-386X.2004.03.032
|
19 |
SHORT N J, HSIAO M S, ABBOTT A L, et al. Latent fingerprint segmentation using ridge template correlation[C]//Proceedings of the 4th International Conference on Imaging for Crime Detection and Prevention. London, UK: IET, 2011: 1-6.
|
20 |
ZHANG J Y , LAI R J , KUO C C J . Adaptive directional total-variation model for latent fingerprint segmentation. IEEE Transactions on Information Forensics and Security, 2013, 8 (8): 1261- 1273.
doi: 10.1109/TIFS.2013.2267491
|
21 |
ZHU Y M, YIN X F, JIA X P, et al. Latent fingerprint segmentation based on convolutional neural networks[C]//Proceedings of the IEEE Workshop on Information Forensics and Security. Washington D.C., USA: IEEE Press, 2017: 1-6.
|
22 |
|
23 |
NGUYEN D L, CAO K, JAIN A K. Automatic latent fingerprint segmentation[C]//Proceedings of the 9th IEEE International Conference on Biometrics Theory, Applications and Systems. Washington D.C., USA: IEEE Press, 2018: 1-9.
|
24 |
JAAFAR R, WALHAZI H, MAALEJ A, et al. U-Net based deep learning architectures for latent fingerprint segmentation[C]//Proceedings of the 19th International Multi-Conference on Systems, Signals & Devices. Washington D.C., USA: IEEE Press, 2022: 485-490.
|
25 |
|
26 |
ZHANG Z X , LIU Q J , WANG Y H . Road extraction by deep residual U-Net. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (5): 749- 753.
doi: 10.1109/LGRS.2018.2802944
|
27 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 4700-4708.
|
28 |
杨真真. 基于残差网络的高分辨指纹图像质量增强算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
|
|
YANG Z Z. Research on image quality enhancement algorithm of high resolution fingerprint based on residual network[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese)
|
29 |
SCHUCH P, SCHULZ S, BUSCH C. De-convolutional auto-encoder for enhancement of fingerprint samples[C]//Proceedings of the 6th International Conference on Image Processing Theory, Tools and Applications. Washington D.C., USA: IEEE Press, 2016: 1-7.
|
30 |
SVOBODA J, MONTI F, BRONSTEIN M M. Generative convolutional networks for latent fingerprint reconstruction[C]//Proceedings of the IEEE International Joint Conference on Biometrics. Washington D.C., USA: IEEE Press, 2017: 429-436.
|
31 |
LI J , FENG J J , KUO C C J . Deep convolutional neural network for latent fingerprint enhancement. Signal Processing: Image Communication, 2018, 60, 52- 63.
doi: 10.1016/j.image.2017.08.010
|
32 |
QIAN P, LI A J, LIU M H. Latent fingerprint enhancement based on DenseUNet[C]//Proceedings of the International Conference on Biometrics. Washington D.C., USA: IEEE Press, 2019: 1-6.
|
33 |
LI X M , CHEN H , QI X J , et al. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Transactions on Medical Imaging, 2018, 37 (12): 2663- 2674.
doi: 10.1109/TMI.2018.2845918
|
34 |
WONG W J , LAI S H . Multi-task CNN for restoring corrupted fingerprint images 1. Pattern Recognition, 2020, 101, 107203.
doi: 10.1016/j.patcog.2020.107203
|
35 |
JOSHI I, ANAND A, VATSA M, et al. Latent fingerprint enhancement using generative adversarial networks[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Washington D.C., USA: IEEE Press, 2019: 895-903.
|
36 |
|
37 |
陈涛, 魏为民, 申林帅. 一种CycleGAN结合膨胀卷积的指纹图像增强方法. 国外电子测量技术, 2022, 41 (9): 47- 53.
URL
|
|
CHEN T , WEI W M , SHEN L S . Fingerprint image enhancement method based on CycleGAN and DCNN. Foreign Electronic Measurement Technology, 2022, 41 (9): 47- 53.
URL
|
38 |
ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2017: 2223-2232.
|
39 |
FENG J J , ZHOU J , JAIN A K . Orientation field estimation for latent fingerprint enhancement. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (4): 925- 940.
doi: 10.1109/TPAMI.2012.155
|
40 |
YANG X , FENG J J , ZHOU J . Localized dictionaries based orientation field estimation for latent fingerprints. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36 (5): 955- 969.
doi: 10.1109/TPAMI.2013.184
|
41 |
CAO K, JAIN A K. Latent orientation field estimation via convolutional neural network[C]//Proceedings of the International Conference on Biometrics. Washington D.C., USA: IEEE Press, 2015: 349-356.
|
42 |
SCHUCH P, SCHULZ S D, BUSCH C. Deep expectation for estimation of fingerprint orientation fields[C]//Proceedings of the IEEE International Joint Conference on Biometrics. Washington D.C., USA: IEEE Press, 2017: 185-190.
|
43 |
席鲜丽. 基于深度学习的指纹方向场校正及图像质量评估[D]. 长春: 吉林大学, 2020.
|
|
XI X L. Fingerprint orientation field correction and image quality evaluation based on deep learning[D]. Changchun: Jilin University, 2020. (in Chinese)
|
44 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 770-778.
|
45 |
DUAN Y J, FENG J J, LU J W, et al. Orientation field estimation for latent fingerprints with prior knowledge of fingerprint pattern[C]//Proceedings of the IEEE International Joint Conference on Biometrics. Washington D.C., USA: IEEE Press, 2021: 1-8.
|
46 |
钟新文, 张忠良. 手印学. 北京: 中国人民公安大学出版社, 2015.
|
|
ZHONG X W , ZHANG Z L . Fingerprint. Beijing: People's Public Security University of China Press, 2015.
|
47 |
CHAMPOD C , LENNARD C J , MARGOT P , et al. Fingerprints and other ridge skin impressions.
|
48 |
WANG R X, HAN C Y, GUO T D. A novel fingerprint classification method based on deep learning[C]//Proceedings of the 23rd International Conference on Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 931-936.
|
49 |
PERALTA D , TRIGUERO I , GARCÍA S , et al. On the use of convolutional neural networks for robust classification of multiple fingerprint captures. International Journal of Intelligent Systems, 2018, 33 (1): 213- 230.
doi: 10.1002/int.21948
|
50 |
WU F , ZHU J L , GUO X M . Fingerprint pattern identification and classification approach based on convolutional neural networks. Neural Computing and Applications, 2020, 32 (10): 5725- 5734.
doi: 10.1007/s00521-019-04499-w
|
51 |
JIAN W , ZHOU Y J , LIU H M . Lightweight convolutional neural network based on singularity ROI for fingerprint classification. IEEE Access, 2020, 8, 54554- 54563.
doi: 10.1109/ACCESS.2020.2981515
|
52 |
HOU Y J, XIE Z X, JIAN-HU, et al. An unsupervised deep-learning method for fingerprint classification: the CCAE network and the hybrid clustering strategy[EB/OL]. [2023-07-05]. http://arxiv.org/abs/2109.05526v1.
|
53 |
SANKARAN A, PANDEY P, VATSA M, et al. On latent fingerprint minutiae extraction using stacked denoising sparse AutoEncoders[C]//Proceedings of the IEEE International Joint Conference on Biometrics. Washington D.C., USA: IEEE Press, 2014: 1-7.
|
54 |
JIANG L, ZHAO T, BAI C C, et al. A direct fingerprint minutiae extraction approach based on convolutional neural networks[C]//Proceedings of the International Joint Conference on Neural Networks. Washington D.C., USA: IEEE Press, 2016: 571-578.
|
55 |
DARLOW L N, ROSMAN B. Fingerprint minutiae extraction using deep learning[C]//Proceedings of the IEEE International Joint Conference on Biometrics. Washington D.C., USA: IEEE Press, 2017: 22-30.
|
56 |
TANG Y, GAO F, FENG J F, et al. FingerNet: an unified deep network for fingerprint minutiae extraction[C]//Proceedings of the IEEE International Joint Conference on Biometrics. Washington D.C., USA: IEEE Press, 2017: 108-116.
|
57 |
NGUYEN D L, CAO K, JAIN A K. Robust minutiae extractor: integrating deep networks and fingerprint domain knowledge[C]//Proceedings of the International Conference on Biometrics. Washington D.C., USA: IEEE Press, 2018: 9-16.
|
58 |
NGUYEN V H , LIU J S , NGUYEN T H B , et al. Universal fingerprint minutiae extractor using convolutional neural networks. IET Biometrics, 2020, 9 (2): 47- 57.
doi: 10.1049/iet-bmt.2019.0017
|
59 |
高梦婷, 孙晗, 唐云祁, 等. 基于改进YOLOv5的指纹二级特征检测方法. 激光与光电子学进展, 2023, 60 (10): 89- 99.
doi: 10.3788/LOP213375
|
|
GAO M T , SUN H , TANG Y Q , et al. Fingerprint second-order minutiae detection method based on improved YOLOv5. Laser & Optoelectronics Progress, 2023, 60 (10): 89- 99.
doi: 10.3788/LOP213375
|
60 |
FENG Y L , KUMAR A . Detecting locally, patching globally: an end-to-end framework for high speed and accurate detection of fingerprint minutiae. IEEE Transactions on Information Forensics and Security, 2023, 18, 1720- 1733.
doi: 10.1109/TIFS.2023.3251862
|
61 |
|
62 |
|
63 |
DONIDA LABATI R , GENOVESE A , MUÑOZ E , et al. A novel pore extraction method for heterogeneous fingerprint images using convolutional neural networks. Pattern Recognition Letters, 2018, 113, 58- 66.
doi: 10.1016/j.patrec.2017.04.001
|
64 |
JANG H U , KIM D , MUN S M , et al. DeepPore: fingerprint pore extraction using deep convolutional neural networks. IEEE Signal Processing Letters, 2017, 24 (12): 1808- 1812.
doi: 10.1109/LSP.2017.2761454
|
65 |
赵元豪. 基于汗孔特征的高分辨率指纹识别算法研究[D]. 深圳: 深圳大学, 2019.
|
|
ZHAO Y H. Research on high resolution fingerprint identification algorithm based on pore features[D]. Shenzhen: Shenzhen University, 2019. (in Chinese)
|
66 |
SHEN Z L, XU Y R, LI J X, et al. Stable pore detection for high-resolution fingerprint based on a CNN detector[C]//Proceedings of the IEEE International Conference on Image Processing. Washington D.C., USA: IEEE Press, 2019: 2581-2585.
|
67 |
ANAND V , KANHANGAD V . Pore detection in high-resolution fingerprint images using deep residual network. Journal of Electronic Imaging, 2019, 28 (2): 1- 5.
doi: 10.1117/1.JEI.28.2.020502
|
68 |
LI S , LI K , YANG J , et al. Research on the local regional similarity of automatic fingerprint identification system fingerprints based on close non-matches in a ten million people database—taking the central region of whorl as an example. Journal of Forensic Sciences, 2023, 68 (2): 488- 499.
doi: 10.1111/1556-4029.15196
|
69 |
ZHANG F D , XIN S Y , FENG J F . Combining global and minutia deep features for partial high-resolution fingerprint matching. Pattern Recognition Letters, 2019, 119, 139- 147.
doi: 10.1016/j.patrec.2017.09.014
|
70 |
LIN C H , KUMAR A . A CNN-based framework for comparison of contactless to contact-based fingerprints. IEEE Transactions on Information Forensics and Security, 2019, 14 (3): 662- 676.
doi: 10.1109/TIFS.2018.2854765
|
71 |
CAO K , JAIN A K . Automated latent fingerprint recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41 (4): 788- 800.
doi: 10.1109/TPAMI.2018.2818162
|
72 |
CAO K , NGUYEN D L , TYMOSZEK C , et al. End-to-end latent fingerprint search. IEEE Transactions on Information Forensics and Security, 2020, 15, 880- 894.
doi: 10.1109/TIFS.2019.2930487
|
73 |
ENGELSMA J J , CAO K , JAIN A K . Learning a fixed-length fingerprint representation. Journal of Medical Virology, 2021, 43 (6): 1981- 1997.
|
74 |
|
75 |
|
76 |
DENG J K, GUO J, XUE N N, et al. ArcFace: additive angular margin loss for deep face recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2019: 4690-4699.
|
77 |
吴春生, 李孝君, 吴浩. 基于深度学习的指纹自动识别技术. 刑事技术, 2022, 47 (1): 88- 95.
doi: 10.16467/j.1008-3650.2021.0121
|
|
WU C S , LI X J , WU H . Introduction to automatic fingerprint identification based on deep learning. Forensic Science and Technology, 2022, 47 (1): 88- 95.
doi: 10.16467/j.1008-3650.2021.0121
|