摘要: 支持向量的数量越大,基于SVM的网络入侵检测系统速度越慢。针对该问题提出一种新的SVM约简方法,在特征空间中对支持向量进行聚类,寻找聚类质心在输入空间中的原像,将其作为约简向量,以实现支持向量削减目的。实验结果证明,该方法能提高SVM入侵检测引擎的速度,增强入侵检测系统的实时响应能力。
关键词:
入侵检测,
支持向量机,
核聚类,
原像
Abstract: The larger the number of support vectors is, the slower the detection speed of network intrusion detection system based on SVM is. Aiming at this problem, a novel method to simplify SVM is presented. The support vectors are organized in clusters in the feature space. For each cluster centroid, it finds the pre-image in input space and adopts it as a reduced vector to compress the number of support vectors. Experimental results show that this method can improve detection speed of SVM engine and enhance the real-time response capability of intrusion detection system.
Key words:
intrusion detection,
Support Vector Machine(SVM),
kernel-based clustering,
pre-image
中图分类号:
曾志强;高 济;朱顺痣. 基于约简SVM的网络入侵检测模型[J]. 计算机工程, 2009, 35(17): 132-134.
ZENG Zhi-qiang; GAO Ji; ZHU Shun-zhi. Network Intrusion Detection Model Based on Simplified SVM[J]. Computer Engineering, 2009, 35(17): 132-134.