摘要: 提出一种基于稀疏表示的入侵检测算法。将稀疏性约束引入过完备词典学习和编码过程中,使学习得到的稀疏系数可以保持较好的重构性,同时增强判别力。利用判别式K-SVD算法优化过完备词典和线性判别函数,将提取的稀疏特征作为线性分类器的输入,实现入侵检测。实验结果表明,该算法可以获得较低的误报率和较高的检测率,分类性能较好。
关键词:
稀疏编码,
支持向量机,
入侵检测,
奇异值分解,
过完备词典
Abstract: This paper proposes an intrusion detection algorithm based on sparse representation. The sparsity constraints are imposed to over-complete dictionary learning and sparse coding so that the sparse coefficients have better reconstruction and discrimination. The discriminative K-SVD algorithm is exploited to optimize the dictionary and the linear discriminative function, and then extracted features are fed into a linear classifier to implement the intrusion detection. Experimental results show that the algorithm achieves lower false alarm rate and higher detection rate, and it has a good performance in intrusion detection. ?
Key words:
sparse coding,
Support Vector Machine(SVM),
intrusion detection,
singular value decomposition,
over-complete dictionary
中图分类号:
崔振, 崔保良, 陈柏生, 罗俊. 稀疏表示在入侵检测中的应用[J]. 计算机工程, 2012, 38(7): 102-104.
CUI Zhen, CUI Bao-Liang, CHEN Bai-Sheng, LUO Dun. Application of Sparse Representation in Intrusion Detection[J]. Computer Engineering, 2012, 38(7): 102-104.