参考文献
[1]张金玉,张炜.装备智能故障诊断[M].北京:国防工业出版社,2013.
[2]于泳,蒋生成,王高林,等.基于状态观测器的感应电机速度传感器故障诊断及容错控制[J].中国电机工程学报,2012,32(18):123-130.
[3]谷吉海,金向阳.基于免疫网与相关性识别的传感器故障诊断[J].计算机工程,2010,36(1):203-205.
[4]田梦楚,陈志敏,魏秀明,等.基于混合粒子滤波的温控传感器故障诊断方法[J].计算机工程,2012,38(9):162-165.
[5]吕琛,栾家辉,王丽梅,等.故障诊断与预测[M].北京:北京航空航天大学出版社,2012.
[6]Singh S,Murthy T V R.Neural Network-based Sensor Fault Accommodation in Flight Control System[J].Journal of Intelligent Systems,2013,22(3):317-333.
[7]马骏,倪世宏,解武杰,等.改进的强跟踪飞机舵面快速故障诊断方法[J].系统工程与电子技术,2015,37(11):2566-2573.
[8]Graves A,Mohamed A R,Hinton G E.Speech Recognition with Deep Recurrent Neural Networks[C]//Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing.Washington D.C.,USA:IEEE Press,2013:6645-6649.
[9]Hinton G.A Practical Guide to Training Restricted Boltzmann Machines[D].Toronto,Canada:Machine Learning Group University of Toronto,2010.
[10]Hinton G E,Salakhutdinov R.Reducing the Dimen-sionality of Data with Neural Network[J].Science,2006,313(5786):504-507.
[11]Hinton G,Osindero S,Teh Y W.A Fast Learning Algorithm for Deep Belief Nets[J].Neural Computation,2014,18(7):1527-1554.
[12]Arel I,Rose D C,Karnowski T P.Deep Machine Learning:A New Frontier in Artificial Intelligence Research[J].IEEE Computational Intelligence Magazine,2010,5(4):13-18.
[13]赵导,齐晓慧,田庆民,等.基于仿真数据的神经网络故障诊断方法[J].计算机工程与设计,2010,31(9):2020-2022.
[14]张小敏.基于神经网络的飞控传感器故障诊断[D].南京:南京航空航天大学,2013.
[15]刘华,唐永哲,郝涛,等.飞控系统传感器故障诊断研究[J].计算机仿真,2013,27(2):30-33.
编辑顾逸斐 |