[1] LI Xinran,ZHOU Jinhe.Community structure partition in green CDN based on complex network[J].Computer Engineering,2018,44(3):119-126.(in Chinese) 李昕冉,周金和.基于复杂网络的绿色CDN社团结构划分[J].计算机工程,2018,44(3):119-126. [2] HAMILTON W L,YING R,LESKOVEC J.Representation learning on graphs:methods and applications[EB/OL].[2019-05-10].https://www.researchgate.net/publication/319896834_Representation_Learning_on_Graphs_Methods_and_Applications. [3] QI Jinshan,LIANG Xun,LI Zhiyu,et al.Representation learning of large-scale complex information network:concepts,methods and challenges[J].Chinese Journal of Computers,2018,41(10):222-248.(in Chinese) 齐金山,梁循,李志宇,等.大规模复杂信息网络表示学习:概念、方法与挑战[J].计算机学报,2018,41(10):222-248. [4] TU Cunchao,YANG Cheng,LIU Zhiyuan,et al.Network representation learning:an overview[J].SCIENTIA SINICA Informationis,2017,47(8):32-48.(in Chinese) 涂存超,杨成,刘知远,等.网络表示学习综述[J].中国科学:信息科学,2017,47(8):32-48. [5] CUI Peng,WANG Xiao,PEI Jian.A survey on network embedding[J].IEEE Transactions on Knowledge and Data Engineering,2018,31(5):833-852. [6] LIU Zhengming,MA Hong,LIU Shuxin,et al.A network representation learning algorithm fusing with textual attribute information of nodes [J].Computer Engineering,2018,44(11):171-177.(in Chinese) 刘正铭,马宏,刘树新,等.一种融合节点文本属性信息的网络表示学习算法[J].计算机工程,2018,44(11):171-177. [7] CHEN Li,ZHU Peisong,QIAN Tieyun,et al.Edge sampling based network embedding model[J].Journal of Software,2018,29(3):756-771.(in Chinese) 陈丽,朱裴松,钱铁云,等.基于边采样的网络表示学习模型[J].软件学报,2018,29(3):756-771. [8] WEN Wen,HUANG Jiaming,CAI Ruizhu,et al.Graph embedding by incorporating prior knowledge on vertex information[J].Journal of Software,2018,29(3):786-798.(in Chinese). 温雯,黄家明,蔡瑞初,等.一种融合节点先验信息的图表示学习方法[J].软件学报,2018,29(3):786-798. [9] QIU Jiezhong,DONG Yuxiao,MA Hao,et al.Network embedding as matrix factorization:unifying DeepWalk,LINE,PTE,and Node2Vec[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining.New York,USA:ACM Press,2018:459-467. [10] FORSYTH D.Representation learning[J].Computer,2015,48(4):6. [11] PAN Shirui,WU Jia,ZHU Xingquan.Tri-party deep network representation[C]//Proceedings of International Joint Conference on Artificial Intelligence.[S.l.]:AAAI Press,2016:1895-1901. [12] PEROZZI B,AL-RFOU R,SKIENA S.Deepwalk:online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2014:701-710. [13] GROVER A,LESKOVEC J.Node2Vec:scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2016:855-864. [14] TANG Jian,QU Meng,WANG Mingzhe,et al.LINE:large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web.[S.l.]:International World Wide Web Conferences Steering Committee,2015:1067-1077. [15] JOYCE J M.Kullback-Leibler divergence[M].Saarbrücken,Germany:Alphascript Publishing,2013. [16] LIAO Lizi,HE Xiangnan,ZHANG Hanwang.Attributed social network embedding[J].IEEE Transactions on Knowledge and Data Engineering,2018,30(12):2257-2270. [17] WANG Daixin,CUI Peng,ZHU Wenwu.Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2016:1225-1234. [18] CAO Shaosheng.Deep neural network for learning graph representations[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press,2016:1145-1152. [19] JIN Di,GE Meng,YANG Liang.Integrative network embedding via deep joint reconstruction[C]//Proceedings of IJCAI’18.Washington D.C.,USA:IEEE Press,2018:3407-3413. [20] YANG Liang,CAO Xiaochun,HE Dongxiao,et al.Modularity based community detection with deep learning[C]//Proceedings of International Joint Conference on Artificial Intelligence.[S.l.]:AAAI Press,2016:2252-2258. [21] YANG Cheng,LIU Zhiyuan,ZHAO Deli,et al.Network representation learning with rich text information[C]//Proceedings of International Conference on Artificial Intelligence.[S.l.]:AAAI Press,2015:2111-2117. |