[1] ABANDA A,MORI U,LOZANO J A.A review on distance based time series classification[J].Data Mining and Knowledge Discovery,2019,33(2):378-412. [2] LINES J,DAVIS L M,HILLS J,et al.A shapelet transform for time series classification[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Washington D.C.,USA:IEEE Press,2012:289-297. [3] XI X,KEOGH E,SHELTON C,et al.Fast time series classification using numerosity reduction[C]//Proceedings of the 23rd International Conference on Machine Learning.New York,USA:ACM Press,2006:1033-1040. [4] SWITONSKI A,JOSINSKI H,WOJCIECHOWSKI K,et al.Dynamic time warping in classification and selection of motion capture data[J].Multidimensional Systems and Signal Processing,2018(6):1-32. [5] LI S C X,MARLIN B M.Classification of sparse and irregularly sampled time series with mixtures of expected Gaussian kernels and random features[C]//Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence.New York,USA:ACM Press,2015:484-493. [6] TIRUNAGARI S,BULL S,POH N.Automatic classification of irregularly sampled time series with unequal lengths:a case study on estimated glomerular filtration rate[C]//Proceedings of the 26th International Workshop on Machine Learning for Signal Processing.Washington D.C.,USA:IEEE Press,2016:1-6. [7] SHEN Y,TINO P,TSANEVA-ATANASOVA K.Classification of sparsely and irregularly sampled time series:a learning in model space approach[C]//Proceedings of International Joint Conference on Neural Networks.Washington D.C.,USA:IEEE Press,2017:3696-3703. [8] FULCHER B D,JONES N S.Highly comparative feature-based time-series classification[J].IEEE Transactions on Knowledge and Data Engineering,2014,26(12):3026-3037. [9] PAJARES R G,BENITEZ J M,PALMERO G S.Feature selection for time series forecasting:a case study[C]//Proceedings of the 8th International Conference on Hybrid Intelligent Systems.Washington D.C.,USA:IEEE Press,2008:555-560. [10] AHMED A A E,TRAORE I.Detecting computer intrusions using behavioral biometrics[C]//Proceedings of the 3rd Annual Conference on Privacy,Security and Trust.Washington D.C.,USA:IEEE Press,2005:91-98. [11] OUYANG Zhiyou,SUN Xiaokui.Human-machine behavior recognition for CAPTCHA based on gradient boosting model[J].Netinfo Security,2017(9):143-146.(in Chinese)欧阳志友,孙孝魁.基于梯度提升模型的行为式验证码人机识别[J].信息网络安全,2017(9):143-146. [12] XIE Miao,LIU Linlan.Mouse trajectory recognition method based on naive Bayes[J].Information & Communications,2018(9):30-32.(in Chinese)谢苗,刘琳岚.基于朴素贝叶斯的鼠标轨迹识别方法[J].信息通信,2018(9):30-32. [13] ZHANG Zhiteng,LIU Linlan.Mouse trajectory recognition method based on gradient boosted decision tree[J].Information & Communications,2018,189(9):22-24.(in Chinese)张志腾,刘琳岚.基于梯度提升决策树的鼠标轨迹识别方法与研究[J].信息通信,2018,189(9):22-24. [14] MENG Guangting,WANG Hong,LIU Haiyan.Mouse trajectory recognition method based on parallel voting decision tree and semi-supervised learning[J].Journal of Chinese Computer Systems,2018,39(9):2050-2055.(in Chinese)孟广婷,王红,刘海燕.融合并行投票决策树和半监督学习的鼠标轨迹识别方法[J].小型微型计算机系统,2018,39(9):2050-2055. [15] "China university computer contest-big data challenge"[EB/OL].[2019-10-22].http://bdc.saikr.com/bdc.(in Chinese) "中国高校计算机大赛-大数据挑战赛"[EB/OL].[2019-10-22].http://bdc.saikr.com/bdc. [16] BREIMAN L.Random forests[J].Machine Learning,2001,45(1):5-32. [17] BLUM A,MITCHELL T.Combining labeled and unlabeled data with co-training[C]//Proceedings of the 11th Annual Conference on Computational Learning Theory.New York,USA:ACM Press,1998:92-100. [18] PAGLIOSA L D C,MELLO R F D.Semi-supervised classification on positive and unlabeled problems using cross-recurrence quantification analysis[J].Pattern Recognition,2018,80:53-63. [19] ZHANG Yan,WU Baoguo,LÜ Danju,et al.Active learning algorithm based on Tri-training[J].Computer Engineering,2014,40(6):215-218.(in Chinese)张雁,吴保国,吕丹桔,等.基于Tri-training的主动学习算法[J].计算机工程,2014,40(6):215-218. [20] GEURTS P,ERNST D,WEHENKEL L.Extremely randomized trees[J].Machine Learning,2006,63(1):3-42. |