作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2021, Vol. 47 ›› Issue (5): 131-137. doi: 10.19678/j.issn.1000-3428.0058236

• 网络空间安全 • 上一篇    下一篇

基于隐私保护的可证明安全委托计算协议

李秋贤1, 周全兴1, 王振龙1, 丁红发2, 潘齐欣1   

  1. 1. 凯里学院 大数据工程学院, 贵州 凯里 556011;
    2. 贵州财经大学 信息学院, 贵阳 550025
  • 收稿日期:2020-05-03 修回日期:2020-06-28 发布日期:2021-05-11
  • 作者简介:李秋贤(1992-),女,硕士研究生,主研方向为密码学、委托计算安全协议;周全兴,讲师;王振龙,教授;丁红发、潘齐欣,副教授。
  • 基金资助:
    贵州省高等学校教学内容和课程改革项目(2019170);国家自然科学基金(61772008);教育部-中国移动科研基金(MCM20170401);贵州省教育厅科技拔尖人才支持项目(黔教合KY字[2016]060);贵州省科技重大专项计划(20183001);贵州省科技计划项目(黔科合平台人才[2017]5788号);贵州省教育厅高校人文社科项目(2016FDY42)。

Provable Secure Delegation Computing Protocol Based on Privacy Protection

LI Qiuxian1, ZHOU Quanxing1, WANG Zhenlong1, DING Hongfa2, PAN Qixin1   

  1. 1. College of Big Data Engineering, Kaili University, Kaili, Guizhou 556011, China;
    2. School of Information, Guizhou University of Finance and Economics, Guiyang 550025, China
  • Received:2020-05-03 Revised:2020-06-28 Published:2021-05-11

摘要: 通过云计算提供的委托计算服务能够为委托方节省大量的计算时间和计算成本,但如何保证委托计算的隐私性和可证明安全性是具有挑战性的问题。结合全同态加密和多线性映射技术的优势,提出基于隐私保护的可证明安全多元多项式委托计算协议。根据委托计算的输入输出隐私安全需求设计委托计算安全模型,通过多线性映射方案和全同态加密技术构造任意第三方可公开验证的委托计算协议,并在标准模型下基于多线性Diffie-Hellman困难性问题假设证明协议的安全性与隐私性。实验与性能分析结果表明,该协议可保证安全性,同时能够减少计算成本,满足大数据环境下委托计算模式的应用需求。

关键词: 委托计算, 多线性映射, 全同态加密, 隐私保护, 可证明安全性

Abstract: Cloud-based delegation computing services can provide tremendous savings in time and computation costs for the delegate,but their privacy and provable security problems remain challenging.This paper combines fully homomorphic encryption and multi-linear mapping technology to propose a provable secure multivariate polynomial delegation computing protocol based on privacy protection.According to the input and output privacy security requirements of delegation computing,the delegation computing security model is designed.On this basis,a delegation computing protocol that is publicly verifiable to any third party is constructed by using the multi-linear mapping scheme and fully homomorphic encryption technology.Then the security and privacy of the protocol is verified based on the assumption of Multi-linear Diffie-Hellman(MDH) difficulty under the standard model.The results of the experiment and performance analysis show that this protocol ensures security and reduces the computing cost,meeting the application requirements of the delegation computing mode in big data environment.

Key words: delegation computing, multi-linear mapping, fully homomorphic encryption, privacy protection, provable security

中图分类号: