唐江平, 周晓飞, 贺鑫, 褚晓文, 李世锋, 常庆蕊, 张继勇
新型冠状病毒肺炎(COVID-19)具有高传染性和高致病性,严重威胁人民群众的生命安全和身体健康,快速准确地检测和诊断COVID-19对于疫情控制至关重要。目前COVID-19检测诊断方法主要包括核酸检测和基于医学影像的人工诊断,但是核酸检测耗时较长并且需要专用的测试盒,而基于医学影像的人工诊断过于依赖专业知识,分析耗时较长且难以发现隐匿病变。随着X射线图像和计算机断层扫描图像数据集的相继提出,科研人员在此基础上构建基于深度学习的COVID-19检测诊断模型,有效辅助了医学专家对COVID-19的高效诊断治疗。总结用于COVID-19检测诊断的主流影像数据集和相关评价指标,以模型任务和影像数据类型2个角度分类介绍现有基于深度学习的COVID-19检测诊断模型,从骨干网络、数据集、影像类型、性能表现、分类种类和开源情况6个维度进行比较与分析。此外,介绍用于抗击COVID-19的优秀应用系统,并探讨该领域的未来发展趋势。