[1] HUANG H, YU P S, WANG C H.An introduction to image synthesis with generative adversarial nets[EB/OL].[2021-09-10].https://arxiv.org/abs/1803.04469. [2] YI X, WALIA E, BABYN P.Generative adversarial network in medical imaging:a review[J].Medical Image Analysis, 2019, 58:1361-8415. [3] GOODFELLOW I J, POUGET-ABADIE J, MIEZA M, et al.Generative adversarial networks[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems.Cambridge, USA:MIT Press, 2014:2672-2680. [4] 柴梦婷, 朱远平.生成式对抗网络研究与应用进展[J].计算机工程, 2019, 45(9):222-234. CHAI M T, ZHU Y P.Research and application progress of generative adversarial networks[J].Computer Engineering, 2019, 45(9):222-234.(in Chinese) [5] MIRZA M, OSINDERO S.Conditional generative adversarial nets[EB/OL].[2021-09-10].https://arxivpreprintarxiv:1411.1784. [6] REED S, AKATA Z, YAN X, et al.Generative adversarial text to image synthesis[EB/OL].[2021-09-10].https://arxiv.org/pdf/1605.05396.pdf. [7] ZHANG H, XU T, LI H S, et al.StackGAN:text to photo-realistic image synthesis with stacked generative adversarial networks[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:5908-5916. [8] KARRAS T, LAINE S, AILA T M.A style-based generator architecture for generative adversarial networks[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:4396-4405. [9] XU T, ZHANG P C, HUANG Q Y, et al.AttnGAN:fine-grained text to image generation with attentional generative adversarial networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:1316-1324. [10] REED S E, AKATA Z, MOHAN S, et al.Learning what andwhere to draw[C]//Proceedings of International Conference on NeuralInformation Processing Systems.New York, USA:ACM Press, 2016:217-225. [11] LI B W, QI X J, LUKASIEWICZ T, et al.Controllable text-to-image generation[EB/OL].[2021-09-10].https://arxiv.org/abs/1909.07083. [12] ZHU M F, PAN P B, CHEN W, et al.DM-GAN:dynamic memory generative adversarial networks for text-to-image synthesis[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:5795-5803. [13] 张海涛, 张梦.引入通道注意力机制的SSD目标检测算法[J].计算机工程, 2020, 46(8):264-270. ZHANG H T, ZHANG M.SSD target detection algorithm with channel attention mechanism[J].Computer Engineering, 2020, 46(8):264-270.(in Chinese) [14] HU J, SHEN L, SUN G.Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7132-7141. [15] WANG Q L, WU B G, ZHU P F, et al.ECA-net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:11531-11539. [16] ZEILER M D, TAYLOR G W, FERGUS R.Adaptive deconvolutional networks for mid and high level feature learning[C]//Proceedings of 2011 International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2011:2018-2025. [17] FU C Y, LIU W, RANGA A, et al.DSSD:deconvolutional single shot detector[EB/OL].[2021-09-10].https://arxiv.org/abs/1701.06659. [18] WANG J Q, CHEN K, XU R, et al.CARAFE:content-aware reassembly of features[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:3007-3016. [19] 许一宁, 何小海, 张津, 等.基于多层次分辨率递进生成对抗网络的文本生成图像方法[J].计算机应用, 2020, 40(12):3612-3617. XU Y N, HE X H, ZHANG J, et al.Text-to-image synthesis method based on multi-level progressive resolution generative adversarial networks[J].Journal of Computer Applications, 2020, 40(12):3612-3617.(in Chinese) [20] QIAO T T, ZHANG J, XU D Q, et al.MirrorGAN:learning text-to-image generation by redescription[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:1505-1514. [21] KULKARNI G, PREMRAJ V, ORDONEZ V, et al.BabyTalk:understanding and generating simple image descriptions[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12):2891-2903. [22] SZEGEDY C, VANHOUCKE V, IOFFE S, et al.Rethinking the inception architecture for computer vision[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:2818-2826. [23] WAH C, BRANSON S, WELINDER P, et al.The caltech-ucsd birds-200-2011 dataset:computation & neural systems technical report[D].Pasadena, USA:California Institute of Technology, 2011. [24] SALIMANS T, GOODFELLOW I J, ZAREMBA W, et al.Improved techniques for training GANs[C]//Proceedings of the 29th International Conference on Neural Information Processing Systems.Cambridge, USA:MIT Press, 2016:2234-2242. [25] HEUSEL M, RAMSAUER H, UNTERTHINER T, et al.GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C]//Proceedings of the 31st International Conferenceon Neural Information Processing Systems.Cambridge, USA:MIT Press, 2017:6629-6640. |