[1] AGRAWAL D, CHAWLA S, CONTRERAS-ROJAS B, et al.RHEEM:enabling cross-platform data processing[J].Proceedings of the VLDB Endowment, 2018, 11(11):1414-1427. [2] GOG I, SCHWARZKOPF M, CROOKS N, et al.Musketeer:all for one, one for all in data processing systems[C]//Proceedings of the 10th European Conference on Computer Systems.New York, USA:ACM Press, 2015:1-16. [3] MATEI Z, MOSHARAF C, TATHAGATA D, et al.Resilient distributed datasets:a fault-tolerant abstraction for in-memory cluster computing[C]//Proceedings of USENIX Symposium on Networked Systems Design and Implementation.[S.1.]:USENIX Association, 2012:15-28. [4] 屠要峰, 陈小强, 周士俊, 等.Geno:基于代价的异构融合查询优化器[J].软件学报, 2022, 33(3):774-796. TU Y F, CHEN X Q, ZHOU S J, et al.Geno:cost-based heterogeneous fusion query optimizer[J].Journal of Software, 2022, 33(3):774-796.(in Chinese) [5] DOKA K, PAPAILIOU N, GIANNAKOURIS V, et al.Mix ‘n’ match multi-engine analytics[C]//Proceedings of IEEE International Conference on Big Data.Washington D.C., USA:IEEE Press, 2016:194-203. [6] 孟小峰, 马超红, 杨晨.机器学习化数据库系统研究综述[J].计算机研究与发展, 2019, 56(9):1803-1820. MENG X F, MA C H, YANG C.Survey on machine learning for database systems[J].Journal of Computer Research and Development, 2019, 56(9):1803-1820.(in Chinese) [7] KRUSE S, KAOUDI Z, CONTRERAS-ROJAS B, et al.RHEEMix in the data jungle:a cost-based optimizer for cross-platform systems[J].The VLDB Journal, 2020, 29(6):1287-1310. [8] WANG J J, BAKER T, BALAZINSKA M, et al.The myria big data management and analytics system and cloud services[C]//Proceedings of the 8th Biennial Conference on Innovative Data Systems Research.Washington D.C., USA:IEEE Press, 2017:2467-1476. [9] KAOUDI Z, QUIANÉ-RUIZ J A, CONTRERAS-ROJAS B, et al.ML-based cross-platform query optimization[C]//Proceedings of the 36th IEEE International Conference on Data Engineering.Washington D.C., USA:IEEE Press, 2020:1489-1500. [10] SUN J, LI G L.An end-to-end learning-based cost estimator[J].Proceedings of the VLDB Endowment, 2019, 13(3):307-319. [11] MARCUS R, NEGI P, MAO H Z, et al.BAO:making learned query optimization practical[C]//Proceedings of 2021 International Conference on Management of Data.New York, USA:ACM Press, 2021:1275-1288. [12] MARCUS R, PAPAEMMANOUIL O.Plan-structured deep neural network models for query performance prediction[J].Proceedings of the VLDB Endowment, 2019, 12(11):1733-1746. [13] MARCUS R, NEGI P, MAO H Z, et al.Neo:a learned query optimizer[J].Proceedings of the VLDB Endowment, 2019, 12(11):1705-1718. [14] 余翔, 柴成亮, 张辛宁, 等.AlphaQO:鲁棒的学习型查询优化器[J].软件学报, 2022, 33(3):814-831. YU X, CHAI C L, ZHANG X N, et al.AlphaQO:robust learned query optimizer[J].Journal of Software, 2022, 33(3):814-831.(in Chinese) [15] ZHANG J, LIU Y, ZHOU K, et al.An end-to-end automatic cloud database tuning system using deep reinforcement learning[C]//Proceedings of 2019 International Conference on Management of Data.Washington D.C., USA:IEEE Press, 2019:415-432. [16] HUANG D X, LIU Q, CUI Q, et al.TiDB[J].Proceedings of the VLDB Endowment, 2020, 13(12):3072-3084. [17] SPARKS E R, VENKATARAMAN S, KAFTAN T, et al.KeystoneML:optimizing pipelines for large-scale advanced analytics[C]//Proceedings of the 33rd IEEE International Conference on Data Engineering.Washington D.C., USA:IEEE Press, 2017:535-546. [18] 毕里缘, 伍赛, 陈刚, 等.基于循环神经网络的数据库查询开销预测[J].软件学报, 2018, 29(3):799-810. BI L Y, WU S, CHEN G, et al.Database query cost prediction using recurrent neural network[J].Journal of Software, 2018, 29(3):799-810.(in Chinese) [19] SIDDIQUI T, JINDAL A, QIAO S, et al.Cost models for big data query processing:learning, retrofitting, and our findings[C]//Proceedings of 2020 ACM SIGMOD International Conference on Management of Data.New York, USA:ACM Press, 2020:99-113. [20] BEGOLI E, CAMACHO-RODRÍGUEZ J, HYDE J, et al.Apache calcite:a foundational framework for optimized query processing over heterogeneous data sources[C]//Proceedings of 2018 International Conference on Management of Data.Washington D.C., USA:IEEE Press, 2018:221-230. [21] ELMORE A, DUGGAN J, STONEBRAKER M, et al.A demonstration of the BigDAWG polystore system[J].Proceedings of the VLDB Endowment, 2015, 8(12):1908-1911. [22] HUTCHISON D, HOWE B, SUCIU D.LaraDB:a minimalist kernel for linear and relational algebra computation[C]//Proceedings of the 4th ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond.New York, USA:ACM Press, 2017:1-10. [23] PETAR V, GUILLEM C, ARANTXA C, et al.Graph attention networks[C]//Proceedings of the 6th International Conference on Learning Representations.Washington D.C., USA:IEEE Press, 2018:5421-5436. [24] THOMAS N, MAX W.Semi-supervised classification with graph convolutional networks[C]//Proceedings of International Conference on Learning Representations.New York, USA:ACM Press, 2017:325-337. [25] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2014:1078-1083. [26] RHEINLÄNDER A, HEISE A, HUESKE F, et al.SOFA:an extensible logical optimizer for UDF-heavy data flows[J].Information Systems, 2015, 52:96-125. [27] VENTURA F, KAOUDI Z, QUIANÉ-RUIZ J A, et al.Expand your training limits!Generating training data for ML-based data management[C]//Proceedings of 2021 International Conference on Management of Data.New York, USA:ACM Press, 2021:1865-1878. |