[1] 孙紫阳, 顾君忠, 杨静.基于深度学习的中文实体关系抽取方法[J].计算机工程, 2018, 44(9):164-170. SUN Z Y, GU J Z, YANG J.Chinese entity relation extraction method based on deep learning[J].Computer Engineering, 2018, 44(9):164-170.(in Chinese) [2] JI S X, PAN S R, CAMBRIA E, et al.A survey on knowledge graphs:representation, acquisition, and applications[J].IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(2):494-514. [3] 李冬梅, 张扬, 李东远, 等.实体关系抽取方法研究综述[J].计算机研究与发展, 2020, 57(7):1424-1448. LI D M, ZHANG Y, LI D Y, et al.Review of entity relation extraction methods[J].Journal of Computer Research and Development, 2020, 57(7):1424-1448.(in Chinese) [4] MIWA M, BANSAL M.End-to-end relation extraction using LSTMs on sequences and tree structures[EB/OL].[2022-03-20].https://arxiv.org/pdf/1601.00770.pdf. [5] KATIYAR A, CARDIE C.Going out on a limb:joint extraction of entity mentions and relations without dependency trees[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA:Association for Computational Linguistics, 2017:1-10. [6] ZENG X R, ZENG D J, HE S Z, et al.Extracting relational facts by an end-to-end neural model with copy mechanism[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.Melbourne, Australia:[s.n.], 2018:1-10. [7] LI X Y, YIN F, SUN Z J, et al.Entity-relation extraction as multi-turn question answering[EB/OL].[2022-03-20].https://arxiv.org/abs/1905.05529v1. [8] WEI Z P, SU J L, WANG Y, et al.A novel cascade binary tagging framework for relational triple extraction[C]//Proceeding of the 58th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2020:1-8. [9] WANG Y C, YU B, ZHANG Y Y, et al.TPLinker:single-stage joint extraction of entities and relations through Token pair linking[EB/OL].[2022-03-20].https://arxiv.org/abs/2010.13415. [10] NIU W C, CHEN Q, ZHANG W W, et al.GCN2-NAA:two-stage graph convolutional networks with node-aware attention for joint entity and relation extraction[C]//Proceedings of the 13th International Conference on Machine Learning and Computing.New York, USA:ACM Press, 2021:542-549. [11] SUN K, ZHANG R C, MENSAH S, et al.Recurrent interaction network for jointly extracting entities and classifying relations[EB/OL].[2022-03-20].https://arxiv.org/abs/2005.00162v2. [12] ZHENG S C, WANG F, BAO H Y, et al.Joint extraction of entities and relations based on a novel tagging scheme[EB/OL].[2022-03-20].https://arxiv.org/abs/1706. 05075v1. [13] DAI D, XIAO X Y, LYU Y J, et al.Joint extraction of entities and overlapping relations using position-attentive sequence labeling[C]//Proceedings of the AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2019:6300-6308. [14] SUI D B, CHEN Y B, LIU K, et al.Joint entity and relation extraction with set prediction networks[EB/OL].[2022-03-20].https://arxiv.org/abs/2011.01675. [15] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2017:6000-6010. [16] SHEN Y L, MA X Y, TANG Y C, et al.A trigger-sense memory flow framework for joint entity and relation extraction[C]//Proceedings of the Web Conference.New York, USA:ACM Press, 2021:1704-1715. [17] TIAN Y H, CHEN G M, SONG Y, et al. Dependency-driven relation extraction with attentive graph convolutional networks[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2021:4458-4471. [18] DEVLIN J, CHANG M W, LEE K, et al.BERT:pre-training of deep bidirectional transformers for language understanding[EB/OL].[2022-03-20].https://arxiv.org/pdf/1810.04805.pdf. [19] MANNING C, SURDEANU M, BAUER J, et al.The Stanford core NLP natural language processing toolkit[C]//Proceedings of the 52th Annual Meeting of Association for Computational Linguistics:System Demonstrations.Stroudsburg:ACL Press, 2014:55-60. [20] RIEDEL S, YAO L M, MCCALLUM A.Modeling relations and their mentions without labeled text[C]//Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases.New York, USA:ACM Press, 2010:148-163. [21] GARDENT C, SHIMORINA A, NARAYAN S, et al. Creating training corpora for NLG micro-planning[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2017:1-10. [22] FU T J, LI P H, MA W Y.GraphRel:modeling text as relational graphs for joint entity and relation extraction[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2019:1409-1418. [23] BAI C Y, PAN L M, LUO S L, et al.Joint extraction of entities and relations by a novel end-to-end model with a double-pointer module[J].Neurocomputing, 2020, 377:325-333. [24] ZENG X R, HE S Z, ZENG D J, et al.Learning the extraction order of multiple relational facts in a sentence with reinforcement learning[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2019:367-377. [25] HONG Y, LIU Y, YANG S, et al.Improving graph convolutional networks based on relation-aware attention for end-to-end relation extraction[J].IEEE Access, 2020, 8:51315-51323. [26] ZHAO K, XU H, CHENG Y, et al.Representation iterative fusion based on heterogeneous graph neural network for joint entity and relation extraction[J].Knowledge-Based Systems, 2021, 219:106888. |