1 |
LOU Y F, BERTOZZI A L, SOATTO S. Direct sparse deblurring. Journal of Mathematical Imaging and Vision, 2011, 39 (1): 1- 12.
doi: 10.1007/s10851-010-0220-8
|
2 |
KRISHNAN D, TAY T, FERGUS R. Blind deconvolution using a normalized sparsity measure[C]//Proceedings of CVPR'11. Washington D. C., USA: IEEE Press, 2011: 233-240.
|
3 |
KOTERA J, ŠROUBEK F, MILANFAR P. Blind deconvolution using alternating maximum a posteriori estimation with heavy-tailed priors[C]//Proceedings of International Conference on Computer Analysis of Images and Patterns. Berlin, Germany: Springer, 2013: 59-66.
|
4 |
LEVIN A, WEISS Y, DURAND F, et al. Efficient marginal likelihood optimization in blind deconvolution[C]//Proceedings of CVPR'11. Washington D. C., USA: IEEE Press, 2011: 2657-2664.
|
5 |
BABACAN S D, MOLINA R, DO M N, et al. Bayesian blind deconvolution with general sparse image priors[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2012: 341-355.
|
6 |
王俊芝, 玉振明. 基于LMS自适应算法的图像去模糊研究. 计算机工程, 2012, 38 (17): 226- 231.
URL
|
|
WANG J Z, YU Z M. Research on image debluring based on adaptive least mean square algorithm. Computer Engineering, 2012, 38 (17): 226- 231.
URL
|
7 |
CHAKRABARTI A. A neural approach to blind motion deblurring[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 221-235.
|
8 |
缪斯, 祝永新. 针对图像盲去模糊的可微分神经网络架构搜索方法. 计算机工程, 2021, 47 (9): 313- 320.
URL
|
|
MIAO S, ZHU Y X. Differentiable neural architecture search method for blind image deblurring. Computer Engineering, 2021, 47 (9): 313- 320.
URL
|
9 |
HRADIŠ M, KOTERA J, ZEMČÍK P, et al. Convolutional neural networks for direct text deblurring[C]//Proceedings of British Machine Vision Conference. Swansea, UK: British Machine Vision Association, 2015: 1-10.
|
10 |
SCHULER C J, HIRSCH M, HARMELING S, et al. Learning to deblur. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38 (7): 1439- 1451.
|
11 |
JIAN S, CAO W F, XU Z B, et al. Learning a convolutional neural network for non-uniform motion blur removal[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 769-777.
|
12 |
KUPYN O, BUDZAN V, MYKHAILYCH M, et al. DeblurGAN: blind motion deblurring using conditional adversarial networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8183-8192.
|
13 |
NAH S, KIM T H, LEE K M. Deep multi-scale convolutional neural network for dynamic scene deblurring[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 257-265.
|
14 |
ZHAO S Y, ZHANG Z, HONG R C, et al. FCL-GAN: a lightweight and real-time baseline for unsupervised blind image deblurring[C]//Proceedings of the 30th ACM International Conference on Multimedia. New York, USA: ACM Press, 2022: 1-7.
|
15 |
|
16 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6000-6010.
|
17 |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with Transformers[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 213-229.
|
18 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. [2022-07-11]. https://arxiv.org/abs/2010.11929.
|
19 |
TOUVRON H, CORD M, DOUZE M, et al. Training data-efficient image Transformers & distillation through attention[EB/OL]. [2022-07-11]. https://arxiv.org/abs/2012.12877.
|
20 |
CHO S J, JI S W, HONG J P, et al. Rethinking coarse-to-fine approach in single image deblurring[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2022: 4621-4630.
|
21 |
LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2022: 9992-10002.
|
22 |
LIANG J Y, CAO J Z, SUN G L, et al. SwinIR: image restoration using Swin Transformer[C]//Proceedings of IEEE/CVF International Conference on Computer Vision Workshops. Washington D. C., USA: IEEE Press, 2021: 1833-1844.
|
23 |
LIU S G, WANG H B, WANG J, et al. Blur-kernel bound estimation from pyramid statistics. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26 (5): 1012- 1016.
doi: 10.1109/TCSVT.2015.2418585
|
24 |
GAO H Y, TAO X, SHEN X Y, et al. Dynamic scene deblurring with parameter selective sharing and nested skip connections[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 3843-3851.
|
25 |
TAO X, GAO H Y, SHEN X Y, et al. Scale-recurrent network for deep image deblurring[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8174-8182.
|
26 |
YUAN Y, FU R, HUANG L, et al. Hrformer: high-resolution vision Transformer for dense predict[C]//Proceedings of Advances in Neural Information Processing Systems. Berlin, Germany: Springer, 2021: 7281-7293.
|
27 |
ZAMIR S W, ARORA A, KHAN S, et al. Learning enriched features for real image restoration and enhancement[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 492-511.
|
28 |
RIM J, LEE H, WON J, et al. Real-world blur dataset for learning and benchmarking deblurring algorithms[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 184-201.
|
29 |
JIAO J, CAO Y, SONG Y, et al. Look deeper into depth: monocular depth estimation with semantic booster and attention-driven loss[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 53-69.
|
30 |
ZHANG H G, DAI Y C, LI H D, et al. Deep stacked hierarchical multi-patch network for image deblurring[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 5971-5979.
|
31 |
ZAMIR S W, ARORA A, KHAN S, et al. Multi-stage progressive image restoration[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 14816-14826.
|
32 |
KUPYN O, MARTYNIUK T, WU J R, et al. DeblurGAN-v2: deblurring(orders-of-magnitude) faster and better[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2020: 8877-8886.
|
33 |
ZOU W B, JIANG M C, ZHANG Y C, et al. SDWNet: a straight dilated network with wavelet transformation for image deblurring[C]//Proceedings of IEEE/CVF International Conference on Computer Vision Workshops. Washington D. C., USA: IEEE Press, 2021: 1895-1904.
|