| 1 | GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 2414-2423. | 
																													
																						| 2 |  | 
																													
																						| 3 |  | 
																													
																						| 4 | LI Y, FANG C, YANG J, et al. Universal style transfer via feature transforms[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 385-395. URL
 | 
																													
																						| 5 |  CAMPBELL N D F ,  KAUTZ J .  Learning a manifold of fonts. ACM Transactions on Graphics, 2014, 33 (4): 1- 11. | 
																													
																						| 6 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2014: 2672-2680. | 
																													
																						| 7 |  YANG S ,  LIU J Y ,  WANG W J , et al.  TET-GAN: text effects transfer via stylization and destylization. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 1238- 1245.  doi: 10.1609/aaai.v33i01.33011238
 | 
																													
																						| 8 | LI C, WAND M. Precomputed real-time texture synthesis with Markovian generative adversarial networks[C]//Proceedings of ECCV 2016. Berlin, Germany: Springer, 2016: 702-716. URL
 | 
																													
																						| 9 | HUANG X, BELONGIE S. Arbitrary style transfer in real-time with adaptive instance normalization[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 1501-1510. URL
 | 
																													
																						| 10 | LIU M Y, HUANG X, MALLYA A, et al. Few-shot unsupervised image-to-image translation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 10551-10560. URL
 | 
																													
																						| 11 | KARRAS T, LAINE S, AILA T M. A style-based generator architecture for generative adversarial networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 4401-4410. URL
 | 
																													
																						| 12 |  | 
																													
																						| 13 | KALISCHEK N, WEGNER J D, SCHINDLER K. In the light of feature distributions: moment matching for neural style transfer[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 9382-9391. URL
 | 
																													
																						| 14 |  | 
																													
																						| 15 |  | 
																													
																						| 16 | 让孝迪. 基于生成对抗网络的无监督艺术图像风格迁移[D]. 烟台: 烟台大学, 2023. URL
 | 
																													
																						|  | RANG X D. Unsupervised art image style transfer based on generative confrontation network[D]. Yantai: Yantai University, 2023. (in Chinese) | 
																													
																						| 17 | 过劲. 基于生成对抗网络的艺术风格图像迁移研究[D]. 南昌: 南昌大学, 2023. URL
 | 
																													
																						|  | GUO J. Research on image migration of artistic style based on generative confrontation network[D]. Nanchang: Nanchang University, 2023. (in Chinese) | 
																													
																						| 18 |  TOGO R ,  KOTERA M ,  OGAWA T , et al.  Text-guided style transfer-based image manipulation using multimodal generative models. IEEE Access, 2021, 9, 64860- 64870.  doi: 10.1109/ACCESS.2021.3069876
 | 
																													
																						| 19 | CHEN H B, ZHAO L, ZHANG H M, et al. Diverse image style transfer via invertible cross-space mapping[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 14860-14869. URL
 | 
																													
																						| 20 |  CAO J .  Hierarchical-based calligraphy style transfer. World Scientific Research Journal, 2021, 7 (5): 430- 439.  doi: 10.6911/WSRJ.202105_7(5).0048
 | 
																													
																						| 21 |  LI W ,  HE Y X ,  QI Y W , et al.  FET-GAN: font and effect transfer via K-shot adaptive instance normalization. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34 (2): 1717- 1724.  doi: 10.1609/aaai.v34i02.5535
 | 
																													
																						| 22 | ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks[C]//Proceedings of International Conference on Machine Learning. [S. l. ]: PMLR, 2019: 7354-7363. URL
 | 
																													
																						| 23 | ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 1125-1134. | 
																													
																						| 24 |  | 
																													
																						| 25 | MECHREZ R, TALMI I, ZELNIK-MANOR L. The contextual loss for image transformation with non-aligned data[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 768-783. URL
 | 
																													
																						| 26 |  | 
																													
																						| 27 | MESCHEDER L, GEIGER A, NOWOZIN S. Which training methods for GANs do actually converge[C]//Proceedings of International Conference on Machine Learning. [S. l. ]: PMLR, 2018: 3481-3490. URL
 | 
																													
																						| 28 | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2223-2232. URL
 | 
																													
																						| 29 | CHOI Y, UH Y, YOO J, et al. StarGAN v2: diverse image synthesis for multiple domains[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 8188-8197. URL
 | 
																													
																						| 30 | KIM J, KIM M, KANG H, et al. U-GAT-IT: unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation[EB/OL]. [2023-05-20]. https://arxiv.org/abs/1907.10830 .URL
 | 
																													
																						| 31 | HORE A, ZIOU D. Image quality metrics: PSNR vs. SSIM[C]//Proceedings of the 20th International Conference on Pattern Recognition. Washington D. C., USA: IEEE Press, 2010: 2366-2369. URL
 | 
																													
																						| 32 |  PREUER K ,  RENZ P ,  UNTERTHINER T , et al.  Fréchet ChemNet Distance: a metric for generative models for molecules in drug discovery. Journal of Chemical Information and Modeling, 2018, 58 (9): 1736- 1741.  doi: 10.1021/acs.jcim.8b00234
 | 
																													
																						| 33 | 钱旭淼, 段锦, 刘举, 等.  基于注意力特征融合的图像去雾算法. 吉林大学学报(理学版), 2023, 61 (3): 567- 576.  doi: 10.13413/j.cnki.jdxblxb.2022252
 | 
																													
																						|  |  QIAN X M ,  DUAN J ,  LIU J , et al.  Image dehazing algorithm based on attention feature fusion. Journal of Jilin University(Science Edition), 2023, 61 (3): 567- 576.  doi: 10.13413/j.cnki.jdxblxb.2022252
 |